GENERATING COSMOLOGICAL PERTURBATIONS AT HORNDESKI BOUNCE

International Conference on Particle Physics and Cosmology October 07, 2023 Yerevan, Armenia

Yulia Ageeva, Pavel Petrov, and Valery Rubakov based on arXiv:2207.04071

INR RAS
Supported by Russian Science Foundation Grant No. 19-12-00393

Motivation

1. The search of non-singular alternatives to inflation seems as an important problem;
2. We study bounce epoch as such alternative/completion to/of inflation.

BoUnce

Figure 1: Hubble parameter: bounce

Qui'2011,2013; Easson'2011; Cai'2012;
Osipov'2013; Koehn'2013; Battarra'2014; Ijjas'2016

Null Energy Condition

Realization of non-singular evolution within classical field theory requires the violation of the Null Energy Condition (NEC) $T_{\mu \nu} n^{\mu} n^{\nu}>0$ (or Null Convergence Condition (NCC) $R_{\mu \nu} n^{\mu} n^{\nu}>0$ for modified gravity).

$$
\begin{gathered}
T_{00}=\rho, \quad T_{i j}=a^{2} \gamma_{i j} p \\
\dot{H}=-4 \pi G(\rho+p)+\text { curvature term } .
\end{gathered}
$$

Let us use $n_{\mu}=\left(1, a^{-1} \nu^{i}\right)$ with $\gamma_{i j} \nu^{i} \nu^{j}=1$ and then NEC leads to

$$
T_{\mu \nu} n^{\mu} n^{\nu}>0 \rightarrow \rho+p \geq 0 \rightarrow \dot{H} \leq 0
$$

Penrose theorem: singularity in the past.

HORNDESKI THEORY

Violation of NEC/NCC without obvious pathologies is possible in the class of Horndeski theories [Horndeski'74]:

$$
\begin{aligned}
& \mathcal{L}_{H}=G_{2}(\phi, X)-G_{3}(\phi, X) \square \phi+ \\
& \quad G_{4}(\phi, X) R+G_{4, X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \\
& \quad+G_{5}(\phi, X) G^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi \\
& \quad-\frac{1}{6} G_{5, X}\left[(\square \phi)^{3}-3 \square \phi\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right],
\end{aligned}
$$

where $X=-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$ and $\square \phi=g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi$. For our purposes it is enough to study

$$
\mathcal{L}_{H}=G_{2}(\phi, X)-G_{3}(\phi, X) \square \phi+G_{4}(\phi) R .
$$

In the framework of this theory one can (quite straightforwardly) obtain healthy bounce epoch.

No-GO THEOREM

Another problem arises if one considers the whole evolution $(-\infty<t<+\infty)$ of such a singularity-free universe: instabilities show up at some moment in the history \rightarrow No-Go theorems. M. Libanov, S. Mironov, V. Rubakov'2016; T. Kobayashi'2016; S. Mironov, V. Rubakov, V. Volkova'2018.

No-GO THEOREM

Let us consider the following perturbed ADM metric:

$$
\begin{gathered}
d s^{2}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right), \\
\gamma_{i j}=a^{2} e^{2 \zeta}\left(\delta_{i j}+h_{i j}+\ldots\right), \quad N=N_{0}(1+\alpha), \quad N_{i}=\partial_{i} \beta .
\end{gathered}
$$

Here α and β are not physical. We work with unitary gauge $\delta \phi=0$.
The quadratic actions for ζ and $h_{i j}$ are given, respectively:

$$
\mathcal{L}_{\zeta \zeta}=a^{3}\left[\mathcal{G}_{S} \frac{\dot{\zeta}^{2}}{N^{2}}-\frac{\mathcal{F}_{S}}{a^{2}} \zeta_{, i} \zeta_{, i}\right], \mathcal{L}_{h h}=\frac{a^{3}}{8}\left[\mathcal{G}_{T} \frac{\dot{h}_{i j}^{2}}{N^{2}}-\frac{\mathcal{F}_{T}}{a^{2}} h_{i j, k} h_{i j, k}\right] .
$$

Remind that bounce solution is $a(t) \rightarrow \infty$ as $t \rightarrow-\infty$. No-Go works if

$$
\begin{aligned}
& \int_{-\infty}^{t} a(t)\left(\mathcal{F}_{T}+\mathcal{F}_{S}\right) d t=\infty \\
& \int_{t}^{+\infty} a(t)\left(\mathcal{F}_{T}+\mathcal{F}_{S}\right) d t=\infty
\end{aligned}
$$

No-Go: $\mathcal{F}_{S, T}<0$ at some moment of time, instability.

No-GO THEOREM

- One way is to go beyond Horndeski and DHOST [Cai et.al.' 2016, Creminelli et.al.'2016, Kolevatov et.al.'2017, Cai, Piao'2017]
- Another way to avoid No-Go theorem for Horndeski is to obtain such a model/solution that $\mathcal{F}_{S, T}$ coefficients have asymptotics

$$
\mathcal{F}_{S, T} \rightarrow 0 \text { as } t \rightarrow-\infty, \text { where } \mathcal{F}_{T}=2 G_{4} .
$$

- This means that

$$
G_{4} \rightarrow 0 \text { as } t \rightarrow-\infty .
$$

- Effective Planck mass goes to zero and it signalizes that we may have strong coupling at $t \rightarrow-\infty$.

Solution: no SC regime at $t \rightarrow-\infty$ in some region of lagrangian parameters.

CONCRETE BOUNCE MODEL

With the appropriate choice of lagrangian functions, the bounce solution is given by

$$
N=\text { const }, \quad a=d(-t)^{\chi},
$$

where $\chi>0$ is a constant and $N t \rightarrow t$ is cosmic time, so that $H=\chi / t$. Coeefficients from quadratic actions are

$$
\mathcal{G}_{T}=\mathcal{F}_{T}=\frac{g}{(-t)^{2 \mu}},
$$

and

$$
\begin{aligned}
\mathcal{G}_{S} & =g \frac{g_{S}}{2(-t)^{2 \mu}}, \quad \mathcal{F}_{S}=g \frac{f_{S}}{2(-t)^{2 \mu}}, \\
u_{T}^{2} & =\frac{\mathcal{F}_{T}}{\mathcal{G}_{T}}=1, \quad u_{S}^{2}=\frac{\mathcal{F}_{S}}{\mathcal{G}_{S}}=\frac{f_{S}}{g_{S}} \neq 1 .
\end{aligned}
$$

To avoid No-Go:

$$
1>\chi>0,2 \mu>\chi+1
$$

To avoid SC regime ($t \rightarrow-\infty$):

$$
\mu<1
$$

POWER SPECTRUM

Spectra are given by

$$
\mathcal{P}_{\zeta} \equiv \mathcal{A}_{\zeta}\left(\frac{k}{k_{*}}\right)^{n_{S}-1}, \quad \mathcal{P}_{T} \equiv \mathcal{A}_{T}\left(\frac{k}{k_{*}}\right)^{n_{T}}
$$

where k_{*} is pivot scale, the spectral tilts are

$$
\begin{gathered}
n_{S}-1=n_{T}=2 \cdot\left(\frac{1-\mu}{1-\chi}\right), \\
n_{S}=0.9649 \pm 0.0042
\end{gathered}
$$

The amplitudes in our model are

$$
\mathcal{A}_{\zeta}=\frac{C}{g} \frac{1}{g_{S} u_{S}^{2 \nu}}, \mathcal{A}_{T}=\frac{8 C}{g},
$$

where

$$
\nu=\frac{1+2 \mu-3 \chi}{2(1-\chi)}=\frac{3}{2}+\frac{1-n_{S}}{2} \approx \frac{3}{2},
$$

approximate flatness is ensured in our set of models by choosing $\mu \approx 1$, while the slightly red spectrum is found for $\mu>1$.

POWER SPECTRUM

The problem №1: red-tilted spectrum requires $\mu>1$, while absence of strong coupling $\mu<1$!
Solution: consider time-dependent μ : changes from $\mu<1$ to $\mu>1$ (time runs as $-\infty<t<\infty$).

Try to escape from SC and generate spectrum, consistent with experiment. Horizon exit must occur in weak coupling regime!
The problem №2: r-ratio is small:

$$
r=\frac{\mathcal{A}_{T}}{\mathcal{A}_{\zeta}} \approx 8 g_{S} u_{S}^{3}<0.032 . \text { Tristram'2022 }
$$

Solution: choose $u_{S} \ll 1$. Mukhanov'1999, 2000, k-inflation

Strong coupling

Cubic action for tensors

$$
\mathcal{S}_{\Pi \pi}^{(3)}=\int d t a^{3} d^{3} x\left[\frac{\mathcal{F}_{T}}{4 a^{2}}\left(h_{i k} h_{j l}-\frac{1}{2} h_{i j} h_{k l}\right) h_{i j, k l}\right] .
$$

Corresponding SC and classical scales are

$$
E_{\text {strong }}^{T T T} \sim \frac{\mathcal{G}_{T}^{3 / 2}}{\mathcal{F}_{T}}=\frac{g^{1 / 2}}{|t|^{\mu}}, \quad E_{c l} \sim H \sim|t|^{-1},
$$

thus we obtain for $E_{\text {strong }}^{T T T}>E_{c l}$:

$$
|t|^{2 \mu-2}<g .
$$

Tensors exit (effective) horizon:

$$
t_{f}^{(T)}(k) \sim\left(\frac{d}{k}\right)^{\frac{1}{1-\chi}}
$$

so the absence of SC at $t=t_{f}$

$$
\frac{1}{g}\left(\frac{d}{k}\right)^{\frac{2 \mu-1}{1-x}} \sim \mathcal{A}_{T} \ll 1
$$

Strong coupling

Cubic action for scalars

$$
\begin{gathered}
\mathcal{S}_{\zeta \zeta \zeta}^{(3)}=\int d t d^{3} \times \Lambda_{\zeta} \partial^{2} \zeta\left(\partial_{i} \zeta\right)^{2} \\
E_{\text {strong }}^{S \zeta \zeta} \sim \Lambda_{\zeta}\left(\mathcal{G}_{S}\right)^{-3 / 2} u_{S}^{-11 / 2} \sim \frac{1}{|t|}\left(\frac{g^{1 / 2} u_{S}^{11 / 2}}{|t|^{\mu-1}}\right)^{1 / 3}
\end{gathered}
$$

thus we obtain for $E_{\text {strong }}^{\zeta \zeta \zeta}>E_{c l}$:

$$
\left(\frac{g u_{s}^{11}}{|t|^{2(\mu-1)}}\right)^{1 / 6}>1
$$

Scalars exit (effective) horizon:

$$
\begin{aligned}
& t_{f}^{2(\mu-1)} \sim g \mathcal{A}_{\zeta} u_{S}^{3} . \\
&\left(\frac{g u_{s}^{11}}{\left|t_{f}\left(k_{\text {min }}\right)\right|^{2(\mu-1)}}\right)^{1 / 6} \sim\left(\frac{u_{S}^{8}}{\mathcal{A}_{\zeta}}\right)^{1 / 6} \sim\left(\frac{r^{8 / 3}}{\mathcal{A}_{\zeta}}\right)^{1 / 6}, \\
&\left(\frac{r^{8 / 3}}{\mathcal{A}_{\zeta}}\right)^{1 / 6}>1 .
\end{aligned}
$$

STRONG COUPLING AND r-RATIO

Figure 2: The r-ratio (red line) and ratio $E_{\text {strong }}\left(k_{*}\right) / E_{c l}\left(k_{*}\right)$ (blue line) as functions of χ for the central value $n_{S}=0.9649$.

CONCLUSION

- We construct the model of bounce, within one can generate nearly flat (red-tilted) power spectrum of scalar perturbations. But it is not so automatic as in inflation!
- In such models the requirement of strong coupling absence leads to the fact that the r-ratio cannot be arbitrarily small and, moreover, it is close to the boundary $r<0.032$ suggested by the observational data.

Thank you for attention!

No-GO THEOREM

Coefficients $\mathcal{F}_{S}, \mathcal{G}_{S}, \mathcal{F}_{T}, \mathcal{G}_{T}$ are given by:

$$
\mathcal{F}_{T}=2 G_{4}+\ldots, \quad \mathcal{G}_{T}=2 G_{4}+\ldots
$$

and

$$
\mathcal{F}_{S}=\frac{1}{a} \frac{d}{d t}\left(\frac{a}{\Theta} \mathcal{G}_{T}^{2}\right)-\mathcal{F}_{T}, \quad \mathcal{G}_{S}=\frac{\Sigma}{\Theta^{2}} \mathcal{G}_{T}^{2}+3 \mathcal{G}_{T}
$$

where Σ and Θ are some cumbersome expression of G_{2}, G_{3}, G_{4} and H. Stability conditions are:

$$
\mathcal{G}_{T} \geq \mathcal{F}_{T}>0, \quad \mathcal{G}_{S} \geq \mathcal{F}_{S}>0
$$

Denote $\xi=a \mathcal{G}_{T}^{2} / \Theta$, we rewrite \mathcal{F}_{S} as

$$
\mathcal{F}_{S}=\frac{1}{a} \frac{d \xi}{d t}-\mathcal{F}_{T} \rightarrow \frac{d \xi}{d t}>a \mathcal{F}_{T}>0
$$

No-GO THEOREM

$$
\frac{d \xi}{d t}>a \mathcal{F}_{T}>0, \quad \xi=a \mathcal{G}_{T}^{2} / \Theta
$$

Here $|\Theta|<\infty$ everywhere and it is smooth function of time (as it is function of ϕ and H), so ξ can never vanish (except $a=0$) \rightarrow thus we demand non-singular model. Integrating from some t_{i} to t_{f}, we obtain:

$$
\xi\left(t_{f}\right)-\xi\left(t_{i}\right)>\int_{t_{i}}^{t_{f}} a(t) \mathcal{F}_{T} d t,
$$

where $a>$ const >0 for $t \rightarrow-\infty$ and it is increasing with $t \rightarrow+\infty$.

NO-GO THEOREM

$$
\xi\left(t_{f}\right)-\xi\left(t_{i}\right)>\int_{t_{i}}^{t_{f}} a(t) \mathcal{F}_{T} d t
$$

- Let $\xi_{i}<0$, so

$$
-\xi_{f}<\left|\xi_{i}\right|-\int_{t_{i}}^{t_{f}} a \mathcal{F}_{T} d t
$$

where RHS \rightarrow negative with $t_{f} \rightarrow+\infty$. So therefore $\xi_{f}>0$. And it means that $\xi=0$ at some moment of time - singularity! So we should demand $\xi>0$ for all times.

- But on the other had, again just rewritting:

$$
-\xi_{i}>-\xi_{f}+\int_{t_{i}}^{t_{f}} a \mathcal{F}_{T} d t
$$

and now RHS \rightarrow positive with $t_{i} \rightarrow-\infty$ and ξ_{i} must be negative. Again contradiction...

NO-GO THEOREM

Thus we have two important features here:

$$
\begin{gathered}
1 . \xi \neq 0, \\
\text { 2.d } / d t>a \mathcal{F}_{T}>0 .
\end{gathered}
$$

$$
\xi\left(t_{f}\right)-\xi\left(t_{i}\right)>\int_{t_{i}}^{t_{f}} a(t) \mathcal{F}_{T} d t
$$

ADM AND COVARIANT

$$
\begin{aligned}
& G_{2}=A_{2}-2 X F_{\phi} \\
& G_{3}=-2 X F_{X}-F \\
& G_{4}=B_{4}
\end{aligned}
$$

where $F(\phi, X)$ is an auxiliary function, such that

$$
F_{X}=-\frac{A_{3}}{(2 X)^{3 / 2}}-\frac{B_{4 \phi}}{X}
$$

with

$$
N^{-1} d \phi / d t=\sqrt{2 X}
$$

EoMs are

$$
\begin{gathered}
\left(N A_{2}\right)_{N}+3 N A_{3 N} H+6 N^{2}\left(N^{-1} A_{4}\right)_{N} H^{2}=0 \\
A_{2}-6 A_{4} H^{2}-\frac{1}{N} \frac{d}{d \dot{t}}\left(A_{3}+4 A_{4} H\right)=0
\end{gathered}
$$

CONCRETE BOUNCE MODEL

Let us move to ADM formalism now:

$$
\mathcal{L}=A_{2}(t, N)+A_{3}(t, N) K+A_{4}\left(K^{2}-K_{i j}^{2}\right)+B_{4}(t, N) R^{(3)} .
$$

We remind that we have unitary gauge $\phi=\phi(t) .{ }^{(3)} R_{i j}$ is the Ricci tensor made of $\gamma_{i j}, \sqrt{-g}=N \sqrt{\gamma}, K=\gamma^{i j} K_{i j},{ }^{(3)} R=\gamma^{i j}{ }^{(3)} R_{i j}$ and

$$
K_{i j} \equiv \frac{1}{2 N}\left(\frac{d \gamma_{i j}}{d t}-{ }^{(3)} \nabla_{i} N_{j}-{ }^{(3)} \nabla_{j} N_{i}\right)
$$

At $t \rightarrow-\infty$

$$
\begin{aligned}
& A_{2}(t, N)=g(-t)^{-2 \mu-2} \cdot a_{2}(N), \quad a_{2}(N)=c_{2}+\frac{d_{2}}{N} \\
& A_{3}(t, N)=g(-t)^{-2 \mu-1} \cdot a_{3}(N), \quad a_{3}(N)=c_{3}+\frac{d_{3}}{N} \\
& A_{4}(t)=-B_{4}(t)=-\frac{g}{2}(-t)^{-2 \mu} .
\end{aligned}
$$

CONCRETE BOUNCE MODEL: STABILITY

$$
\begin{aligned}
& f_{S}=\frac{2\left(2-4 \mu+N^{2} a_{3 N}\right)}{2 \chi-N^{2} a_{3 N}}, \\
& g_{S}=2\left[\frac{2\left(2 N^{3} a_{2 N}+N^{4} a_{2 N N}-3 \chi\left(2 \chi+N^{3} a_{3 N N}\right)\right)}{\left(N^{2} a_{3 N}-2 \chi\right)^{2}}+3\right], \\
& f_{S}=-2\left(\frac{4 \mu-2+d_{3}}{2 \chi+d_{3}}\right), \\
& g_{S}=\frac{6 d_{3}^{2}}{\left(2 \chi+d_{3}\right)^{2}} . \\
& d_{3}=-2, \\
& f_{S}=\frac{4(\mu-1)}{1-\chi}=2\left(1-n_{S}\right), \\
& g_{S}=\frac{6}{(1-\chi)^{2}} .
\end{aligned}
$$

WKB

$$
\begin{gathered}
\zeta=\frac{1}{\left(2 \mathcal{G}_{S} a^{3}\right)^{1 / 2}} \cdot \psi, \\
\mathcal{S}_{\psi \psi}^{(2)}=\int d^{3} x d t\left[\frac{1}{2} \dot{\psi}^{2}+\frac{1}{2} \frac{\ddot{\alpha}}{\alpha} \psi^{2}-\frac{u_{S}^{2}}{2 a^{2}}(\vec{\nabla} \psi)^{2}\right], \\
\alpha=\left(2 \mathcal{G}_{S} a^{3}\right)^{1 / 2}=\frac{\text { const }}{(-t)^{\frac{2 \mu-3 x}{2}}} . \\
\psi_{W K B}=\frac{1}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2 \omega}} \cdot \mathrm{e}^{-i \int \omega d t}=\frac{1}{(2 \pi)^{3 / 2}} \sqrt{\frac{d}{2 u_{S} k}}(-t)^{\chi / 2} \cdot \mathrm{e}^{i \frac{u_{S}}{d} \frac{k}{1-\chi}(-t)^{1-x}}, \\
\omega=\frac{u_{S} k}{a}=\frac{u_{S} \cdot k}{d(-t)^{\chi}} .
\end{gathered}
$$

POWER SPECTRA

$$
\begin{gathered}
\zeta=\mathfrak{C} \cdot(-t)^{\delta} \cdot H_{\nu}^{(2)}\left(\beta(-t)^{1-\chi}\right), \\
\delta=\frac{1+2 \mu-3 \chi_{1}}{2}, \\
\beta=\frac{u_{s} k}{d(1-\chi)}, \\
\nu=\frac{\delta}{\gamma}=\frac{1+2 \mu-3 \chi}{2(1-\chi)}, \\
\mathfrak{C}=\frac{1}{\left(g g_{s}\right)^{1 / 2}} \frac{1}{2^{5 / 2} \pi(1-\chi)^{1 / 2}} \frac{1}{d^{3 / 2}}, \\
\zeta=(-i) \frac{\mathfrak{C}}{\sin (\nu \pi)} \frac{(1-\chi)^{\nu}}{u_{S}^{\nu} \Gamma(1-\nu)}\left(\frac{2 d}{k}\right)^{\nu}, \\
\mathcal{P}_{\zeta}=4 \pi R^{3} \zeta^{2} .
\end{gathered}
$$

SPACE OF PARAMETERS n_{S} AND χ

Figure 3: Space of parameters n_{s} and χ. Colored strips correspond to different ratios of strong coupling scale to classical scale:
$1<E_{\text {strong }}\left(k_{*}\right) / E_{c l}\left(k_{*}\right)<1.5$ (red), $1.5<E_{\text {strong }}\left(k_{*}\right) / E_{c l}\left(k_{*}\right)<2.2$ (orange),
$2.2<E_{\text {strong }}\left(k_{*}\right) / E_{c l}\left(k_{*}\right)<3$ (green), $3<E_{\text {strong }}\left(k_{*}\right) / E_{c l}\left(k_{*}\right)<4.5$ (blue),
$4.5<E_{\text {strong }}\left(k_{*}\right) / E_{c l}\left(k_{*}\right)$ (magenta).

SPACE OF PARAMETERS ϵ AND $\chi: \mu=1$

Figure 4: Space of parameters ϵ and χ in the case $\mu=1$. Colored strips correspond to different ratios of strong coupling scale to classical scale: $1<E_{\text {strong }} / E_{c l}<1.8$ (red), $1.8<E_{\text {strong }} / E_{c l}<2.7$ (orange), $2.7<E_{\text {strong }} / E_{c l}<4.2$ (green), $4.2<E_{\text {strong }} / E_{c l}<6$ (blue), $6<E_{\text {strong }} / E_{c l}$ (magenta).

