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MOTIVATION

1. The search of non-singular alternatives to inflation seems as an
important problem;

2. We study bounce epoch as such alternative/completion to/of
inflation.



BOUNCE

L L I I I t
-10000 -5000 5000 10000 15000

Figure 1: Hubble parameter: bounce

Qui’2011,2013; Easson’2011; Cai’2012;
Osipov’2013; Koehn'2013; Battarra’2014; 1jjas’2016



NuLL ENERGY CONDITION

Realization of non-singular evolution within classical field theory
requires the violation of the Null Energy Condition (NEC) T,,n*n” > 0
(or Null Convergence Condition (NCC) R,,,n*n* > 0 for modified

gravity).
Too =p, Tj=a*vp,

H = —4nG(p + p) + ctrvature-term.

Let us use n, = (1,a~"') with y;2'v/ = 1 and then NEC leads to
Twn*n’ >0 —p4+p>0— H<O.

Penrose theorem: singularity in the past.



HORNDESKI THEORY

Violation of NEC/NCC without obvious pathologies is possible in the
class of Horndeski theories [Horndeski'74]:

‘CH = Gz(¢7X) - G3(¢*X)D¢+
Gu(¢, X)R + Gux [(O¢)* — (VuVu0)’]
+ G5(¢,X)G“”VMVV¢

~ £Gsx[(T6) ~ 309(V,Vu6) +2(9,,9,6)),

where X = —ggwamayqﬁ and O¢ = gV, V,¢. For our purposes it
is enough to study

Ly = Gz((b, X) = G3((D,X)|:’§Z5 + Gq((b)R

In the framework of this theory one can (quite straightforwardly)
obtain healthy bounce epoch.



NO-GO THEOREM

Another problem arises if one considers the whole evolution

(—oo < t < +00) of such a singularity-free universe: instabilities
show up at some moment in the history — No-Go theorems.

M. Libanov, S. Mironov, V. Rubakov'2016; T. Kobayashi’2016; S. Mironov,
V. Rubakov, V. Volkova'2018.



NO-GO THEOREM

Let us consider the following perturbed ADM metric:
ds? = —N2dE + v; (dx" n N"dt) (dxf + Nfdt) ,
Vij = azezc(é,-, + h,‘j +...), N=No(1+a), N;=090p.

Here o and 3 are not physical. We work with unitary gauge d¢ = 0.
The quadratic actions for ¢ and hj; are given, respectively:

&2
N2

Fr

IR 03 h2
Lg=0a [gs - GQSCJCJ] » Lo =5 [QTNZ - azh/j,rehu,re] :

Remind that bounce solution is a(t) — oo as t — —oo. No-Go works if

\/t G(t)(fT+f5)dt =00,

/m a(t)(Fr + Fs)dt = oo .

No-Go: Fs 1 < 0 at some moment of time, instability.



NO-GO THEOREM

- One way is to go beyond Horndeski and DHOST [Cai et.al’ 2016,
Creminelli et.al’2016, Kolevatov et.al/2017, Cai, Piao'2017]

- Another way to avoid No-Go theorem for Horndeski is to obtain
such a model/solution that Fs r coefficients have asymptotics

Fst— 0ast— —oo, where Fr = 2G,.

- This means that
G, — 0ast— —oo.

- Effective Planck mass goes to zero and it signalizes that we may
have strong coupling at t — —oo.

Solution: no SC regime at t — —oo in some region of lagrangian
parameters.



CONCRETE BOUNCE MODEL

With the appropriate choice of lagrangian functions, the bounce
solution is given by

N =const, a=d(-t)¥,

where y > 0 is a constant and Nt — t is cosmic time, so that
H = x/t. Coefficients from quadratic actions are

_ - _ 9
gT - ]:T - (7t)2'u"
and f
_ gs _ S
gS - gZ(—t)Z/‘ ) fg - gz( t)z,“'
2 _ T , _Fs _ fs
Uur=—=1 Us=—=—= 1.
T gT S g gS 7é

To avoid No-Go:
T>x>0, 2u>x+1.
To avoid SC regime (t — —oo):

w<



POWER SPECTRUM

Spectra are given by

’? ns—1 k nr
,PC E.AC (’?> ; PTEAT (i’?) 5

where R, is pivot scale, the spectral tilts are

1-
ﬂ5—1_ﬂ7_2-( IU/>7
T—x

ns = 0.9649 4+ 0.0042.
The amplitudes in our model are
_C 1 _8C
T ggsu?’

A

T*E?

where

20—x) 2 2 2
approximate flatness is ensured in our set of models by choosing
=1, while the slightly red spectrum is found for u > 1.

_1+2u—-3x 3 1-ns 3



POWER SPECTRUM

The problem N21: red-tilted spectrum requires p > 1, while absence
of strong coupling u < 1!

Solution: consider time-dependent u: changes from p < 1to pu > 1
(time runs as —oo < t < c0).

Try to escape from SC and generate spectrum, consistent with
experiment. Horizon exit must occur in weak coupling regime!

The problem N22: r-ratio is small:

r= % ~ 8gsu3 < 0.032. Tristram’2022
¢

Solution: choose us < 1. Mukhanov'1999, 2000, k-inflation
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STRONG COUPLING

Cubic action for tensors

TTT* /dt a*dx [ (h,}?hﬂ h[jhkl> hij,kl} .

Corresponding SC and classical scales are

3/2 1/2
Ellong ~ 9 _9 . Eq~H~,
.FT |t|“
thus we obtain for E[[7,,, > Eq:
P2 <g.

Tensors exit (effective) horizon:

0~ (5)




STRONG COUPLING

Cubic action for scalars
5% = [ dtxndc @0y

1/3
Lspompz 1 (g7ug”?
i ~ (057 ()

thus we obtain for ESSS > Eg:

strong
guflsfl 1/6
(i) >

Scalars exit (effective) horizon:

2(p—1
tf(# )~ Q.Agug .

gul! 1/6 U 1/6 /873y 1/
(=) ~(x) ~ (&)
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r8/3
— ) >1.
<A<> h




STRONG COUPLING AND r-RATIO
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Figure 2: The r-ratio (red line) and ratio Estrong(R+)/Eci(R+) (blue line) as
functions of x for the central value ns = 0.9649.
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CONCLUSION

- We construct the model of bounce, within one can generate
nearly flat (red-tilted) power spectrum of scalar perturbations.
But it is not so automatic as in inflation!

- In such models the requirement of strong coupling absence
leads to the fact that the r-ratio cannot be arbitrarily small and,
moreover, it is close to the boundary r < 0.032 suggested by the
observational data.

Thank you for attention!



NO-GO THEOREM

Coefficients Fs, Gs, Fr, Gr are given by:
Fr=2G4+ .., Gr=2G4+...,

and
1d

~adt
where ¥ and © are some cumbersome expression of G,, G, G, and H.
Stability conditions are:

a >
Fs (%) —Fr. 95 = 5:9% +30r,

Gr>Fr>0, Gs>JFs>0.

Denote & = aG#/©, we rewrite Fs as

_1d§ .T"T—>%>G}—T>O

Fs=gat at
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NO-GO THEOREM

% >aFr>0, &=aG?/o,

Here |©| < oo everywhere and it is smooth function of time (as it is
function of ¢ and H), so & can never vanish (except a = 0) — thus we
demand non-singular model. Integrating from some t; to t;, we

obtain:
oty

E(ty) — £(t) > / a(t)Frat,

g

where a > const > 0 for t —+ —oo and it is increasing with t — +oo.



NO-GO THEOREM

E(ty) — £(t) > / " a(t)Frat,

i

- Llet§ <0, s0
t
~g<lgl- [ ardt
G

where RHS — negative with t; — +o00. So therefore & > 0. And it
means that £ = 0 at some moment of time - singularity! So we
should demand ¢ > 0 for all times.

- But on the other had, again just rewritting:

i
=& > —§f+/ aFrdt,
i

i

and now RHS — positive with t; — —oo and & must be negative.
Again contradiction...



NO-GO THEOREM

Thus we have two important features here:

1£#0,
2.d¢/dt > aFr > 0.

re
§(t2)
b / .
/ tg rt
&(t1)

E(ty) — £(t) > / La(t) Frat, ;



ADM AND COVARIANT

Gy =A; — 2XFy,

Gy = — 2XFx — F,

Gy =B,
where F(¢, X) is an auxiliary function, such that

_ A Bu

(2X)3/2 X !

with

N~'dp/dt = V2X.
EoMs are

(NAZ)N + 3NAsyH + 6N2(N7WA4)NH2 =0,
Ay — 6ALH? — %% (A3 + 4AH) =0 .
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CONCRETE BOUNCE MODEL

Let us move to ADM formalism now:
L = Ay(t, N) + As(t, N)K + Ay(K? — KZ) + B (t, N)RC).

We remind that we have unitary gauge ¢ = ¢(t). G RU is the Ricci
tensor made of v, /=g = N\/7, K= 4"Kj;, R =47 ®)R; and

1 ([ dvi
N ( L Own; - (3)V,-N,->,

Ky dt

Att — —o0

A(LN) = 907 ax(N), () = o + 2
A3(t7 N) = g(_t)—2,u—1 . Og(N), Clg(N) =C3+ Clj\f

Au(t) = =By (t) = =2 (—t) ™2~ .

N
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CONCRETE BOUNCE MODEL: STABILITY

fs =

gs =

2(2 — 4u + N203/\/)

I

2X = N203N

2(2/\/302[\/ + N*aoun — 3x(2x + /\/303/\//\/))
2

(N?asy — 2x)?

by —2+d;
:—2 _—
& ( 2x + d3
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gs = 0.
(2x + ds)
ds = —2,

fo= M= o ny),

1=

+3

)
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POWER SPECTRA

¢=C-(=1)° - HP (B(=1)"7),

5:1—1—2#—3)(1,
2
usk
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P = 4mR¢.
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SPACE OF PARAMETERS Ns AND
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Figure 3: Space of parameters ns and . Colored strips correspond to

different ratios of strong coupling scale to classical scale:

1 < Estrong(Rs)/Eci(R«) < 1.5 (red), 1.5 < Estrong (R« )/Eci(R«) < 2.2 (orange),

2.2 < Estrong(R+)/Eci(Ry) < 3 (green), 3 < Estrong(Rs)/Ect(Rs) < 4.5 (blue),

4.5 < Estrong(R+)/Eci(ks) (magenta). .



SPACE OF PARAMETERS € AND x: it =1

r=0.036, red
r=0.032, black
r=0.022, blue
r=0.01, green
r=0.005, magenta

Figure 4: Space of parameters e and x in the case u = 1. Colored strips
correspond to different ratios of strong coupling scale to classical scale:
1 < Estrong /Ect < 1.8 (red), 1.8 < Estrong/Ecl < 2.7 (Orange),

2.7 < Estrong/Ect < 4.2 (green), 4.2 < Estrong/Ec < 6 (blue), 6 < Estrong/Eci
(magenta).
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