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Motivation for Hotava gravity

Einstein GR

M]% d M]%' d iJ

Higher derivative gravity (Stelle 1977)
/(R+ R*+ R, R") = /(hijmhij + hi; PR + ) (2)

The theory is renormalizable and asymptotically free. However the theory is
not unitary due to presence of ghosts.
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|
Hotava gravity (2009)

The key is the anisotropic scaling of time and space coordinates,
t—b*t, z'wb izt 1=1,...,d (3)

The theory contains only second time derivatives

/ dt dd(E (h”h” — hij(—A)Zhij =+ .. ) (4)
o b—(z+d)
And field scales as
h” — b(diz)/zhij (5)
Critical theory
z=d (6)

Foliation preserving diffeomorphisms

tst'(t), o' 2"t x) (7)
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Metric decomposition

The metric in the action of HG is expanded into the lapse NN, the shift N* and
the spatial metric 7;; like in the Arnowitt-Deser-Misner (ADM)
decomposition,

ds? = N2dt? — v;;(da’ + N'dt)(da? + Nidt). (8)
Fields are assigned the following dimensions under the anisotropic scaling:

[Nl =[] =0, [N]=d-1. 9)
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Projectable version

A.Barvinsky, D.Blas, M.Herrero-Valea, S.Sibiryakov, C.Steinwachs (2016)

We consider projectable version of Horava gravity. The lapse IV is restricted to
be a function of time only, N = N(t)

1 .
S = ﬁ /dtddl‘\/’?(K”K” —\K? — V) s (10)
where
1.

The potential part V in d = 3 reads,
V =2A —nR+ 1 R* + paRi; RY
+ 1R + s RR;jRY + v3RLRLRE + 14V, RV'R + v5V; R; V' R* |
This expression includes all relevant and marginal terms. It contains 9

couplings A, n, 1, o and vy, a =1,...,5.
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Dispersion relations

The spectrum of perturbations contains a transverse-traceless graviton and a
scalar mode. Both modes have positive kinetic terms when G is positive and

A<1/3 or A>1. (13)

Their dispersion relations around a flat background are

wiy = nk* + pokt +vskS (14a)
11—\
w? = T (= nk® + (81 + 3p2)k*) + v kS (14b)

where k is the spatial momentum and we have defined

(1 — \)(8vy + 3vs)
1—3)\ '

Vs

(15)

These dispersion relations are problematic at low energies where they are
dominated by the k2-terms.
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One-loop action

Background field method with static background metric and zero background
shift

vi; (T, %) = gi;(x) + hi; (1, %), Ni(T, x) =0+ ni(T, X) . (16)

The one-loop effective action is given by the Gaussian path integral
exp (7]11710013) = /Det O;; / [dhA dn' dc déj} exp ( — 5(2)[h‘4,ni, ¢, ¢l ),

where the quadratic part of the full action consists of three contributions —
metric, shift vector and ghost ones,

SA[hA nt e = é/deSx\/g}[;hA (~Gapd? +Dag) h”?
(17)

+ %ani(’)ik (—5;“83 + Bkj) nl + ¢ (—5;-83 + Bij) .
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Metric part of the action

The kinetic part for the metric perturbations has the form

V9 4 2B gkl Lo ik i A ik
— = h"Gapd:h G = gl —g¥ 18
°G LA g"'g’") - TEACAR (18)
where h4 = hij. The part of the quadratic action with space derivatives of the
metric is too lengthy to be written explicitly. Schematically, it has the form,

Lpot, hh + Lgt, hh = ;/C; hADaph®, (19)

=~ 400 terms

where D4 is a purely 3-dimensional differential operator of 6th order. In flat
background it reduces to terms with exactly 6 derivatives,

WADash® = (25 = L\ pwa20,0,0% + (20s + 25 + MEFEDY a2 9,4
2 4o 2 20

- (1,4 LR )h”A@iajOkalhkl + (f vy — 2 M)hA% — Bpii ARy
5 4 o 4
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One-loop action and 3D reduction

Effective action consists of two parts

i-loop _ iTrln(_(sga?_ + DAB) — iTrln (—5;83 + ]sz) ) (20)

where
D4, = (G H)4%Dep. (21)

The full one-loop action can be expressed as

Fl—loop — %/dT |:Tr3 \/@ — TI‘3 \/}Bﬁl']:| R (22)
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The strategy for evaluation

The operators F = (D, B) can be brought into the form:

F= ZR(a) Z k1. Vog_a(—=A)*F R(a):O(lla). (23)

6>2k>a

Their square roots are nonlocal pseudo-differential operators given by

o) K.
S 1

\/F = ZR(D’) Z Oéa7kV1...VQk_a(_A>w ; (24)

a=0 k>a/2
The UV divergent part of I"'~1°°P follows from the calculation of UFTs
1
3
/d xR(a)(x)Vl...ng_amé(x,x’) L (25)

Since the divergences of HG have at maximum the dimensionality a = 6, only
finite number of such traces will be needed. The problem is split in two steps
— calculation of the operator square root and the evaluation of UFTs.
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Perturbative scheme

Square root contains all powers of curvature. By denoting all curvature
corrections in VF as X,

VF=0Q© +X (26)
one obtains the equation for this correction term
QX +XQ" =F- (Q)*-x2, F-(Q®)* xR (27)

This nonlinear equation can be solved by iterations because its right hand side
is at least linear in curvature.
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Universal functional traces

I.Jack and H.Osborn (1984), A.Barvinsky and G.Vilkovisky (1985)

1 1 ~ N—1/2 sA ¢ div
V”Vzpmé(x,y) y:I: mvllvlpA dss es 6($,y) y—s
Heat-kernel (Schwinger-DeWitt) expansion

R D2 (g _a(T V)
eSA‘s(x,y):ﬁ ZS an(z,y).
Example of tensor UFTs
y . In 1.2 1 /1 1
A 1/26__kl div kl7(7 mnpg “RZ4A )
g7 (=A) 267 (@, y)|y e 16ﬂ2¢§9 M S B Bmn + S RE+ AR,
div

/d3 5 VLV (=) 25, y) -

InL 753 22 1 61
=- —le Tia0 1 RYR—- ——R®> - —_RAR— —R;;ARY

167r2/ \[( P 120 4 105 84 560 )
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Beta functions

Essential couplings

G= \/% N, us = \/(1 (T)ES;/“\)’;SVE’), Vo = Z: a=1,2,3, (28)
T -
_ g o
P9 = S6880m2(1 = N2(1 = 302(1 F us)Pud ;)u PrAvr, vz, val, (29b)
G 9
Px = A eas0m 2 (1 = 2P (1 = BNB(1 T u)Pul 7;)“? Prx v, va, val, (29¢)
where the prefactor coefficients A, = (A, , A, , Avy, Av,) equal

Au, =us(1=X), Ay =1, Ay =A, =2 (30)

Example of a polynomial
Pis = —2(1 — X)?[241920007 (1 — X)? + 8v3 (4264517 — 86482 + 43837)
+ v3 (58698 — 106947\ + 482492%) + 4032v1 (462v2(1 — X)? + 201v3(1 — X)?
+ 3027 — 44X — 10) + 8v2(62522% — 9188\ — 1468) + 8v2v3(34335A% — 71196
+ 36861) + v3(20556A7 — 30792) — 3696) + 4533A\% — 3881\ + 1448].
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Fixed points of RG flow

There are 5 solutions for the system of equations

Bg; =0, i = A\, Ug, U1, V2, V3 . (31)
They written down in the table

A Us ‘ V1 Vs ‘ v3 ‘ ,8g/g2 ‘ AF? ‘
0.1787 60.57 -928.4 -6.206 -1.711 -0.1416 yes
0.2773 390.6 -19.88 -12.45 2.341 -0.2180 yes
0.3288 54533 3.798x10% -48.66 4.736 -0.8484 yes
0.3289 57317 -4.125x10% -49.17 4.734 -0.8784 yes

0.333332 | 3.528x10™ | -6.595 x10%® | -1.950 x10% | 4.667 | -3.989x10° | yes

Invariance of GR under 4d diffeomorphisms sets the value of A to 1. That’s
why one expects that A — 17 in the IR limit. However, all the solutions lie on
the left side of the unitary domain

A<1/3 or A>1 (32)

and there are no RG trajectories with A — 17T,
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N
A — 0o limit

A.Glimriikgiioglu and S.Mukohyama, Rev. D 83 (2011) 124033

The beta function S8, diverges in the limit A — co. For the new variable p, the limit A = co
corresponds to the finite o = 1. It’s beta function reads

2u? + us0(4 — 50) — 302 1—A
Bo=301-0)9 sz::)ngii(uri)s)g = e=315y (33)
Solutions of the system
Bx/9|amoo =05 X = us,v1,v2,03 . (34)
(e=1)
are written down in the table
Ne Us vy v2 v3 Bg/G? | AF? Ou?a;fl go:vvl?
1 0.0195 0.4994 -2.498 2.999 -0.2004 yes no
2 0.0418 | -0.01237 | -0.4204 1.321 -1.144 yes no
3 0.0553 | -0.2266 0.4136 | 0.7177 | -1.079 yes no
4 12.28 -215.1 -6.007 | -2.210 | -0.1267 yes yes
5 (A) 21.60 -17.22 -11.43 1.855 -0.1936 yes yes
6 (B) | 440.4 | -13566 | -2.467 | 2.967 | 0.05822 | mno yes
7 571.9 -9.401 13.50 -18.25 | -0.0745 yes yes
8 950.6 -61.35 11.86 3.064 0.4237 no yes
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Stability matrix

In the vicinity of a fixed point, the linearized RG flow can be analyzed with
the help of the stability matrix B,”,

s . [ 88,,
By =Y B9 —g)), B = <ﬁg>
J

where g are fixed point values of the coupling constants.

) Bgi = Bgi/gv (35)

9i=g;

| Fixedpoint || 00 [ 62 [ ¢° | o' | 00 |
A -0.0141 | -0.0700 | 0.257 | 0.320 ‘ 0.0657
B -0.0151 | 0.603 | 0.308 | 0.092 £ 0.289 ¢

Table: Eigenvalues 07 of the stability matrix for the fixed points A and B.
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RG equation

We choose as an initial condition of the RG equation a point slightly shifted
from the fixed point ¢g* in the repulsive direction

dg ~
di’rz = ﬁgw gi = (1}1,1}2,'03,“137 Q)’ (36)

9:(0) =g +ecyw!, J=1,2,34,5.

where € is a small parameter, c; are constants and w; are eigenvectors
enumerated by the index J, Bijwf = 07w/, with 67 < 0.

Figen- w w w w w

vector ¢ o1 v2 U3 s
Al 0.0423 -0.0398 | 5.25x1073 | 5.57x10~2 | 0.998
A2 0 -0.115 -0.224 0.0480 -0.967
B1 2.19%x107° -0.999 1.87x107° | 5.69x10~°% | 0.0162

Table: Eigenvectors of the stability matrix with negative eigenvalues for the fixed
points A and B.
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From A to B

First we build the trajectory flowing from point A along the eigenvector A2.
Since this vector has zero g-part, the trajectory stays in the hyperplane o = 1.
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Figure: RG trajectory connecting fixed points A and B. The trajectory lies entirely
in the hyperplane o = 1. Panels show its projections on the (us,v1) and (v, vs)
planes. Arrows indicate the flow from UV to IR.
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From Bto A\ — 1"

Point B has a unique repulsive direction, pointing away from the o =1

hyperplane. This gives rise to two RG trajectories, depending on the sign of
in the initial conditions.

05

o

Figure: The couplings (us,v,) as functions of g along the RG trajectory from the
fixed point B to o =0 (A — 11). Arrows indicate the flow from UV to IR.
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The behaviour of G
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Figure: Behaviour of G as a function of (A — 1) along an RG trajectory connecting
the point A to A — 17. In regions I, IT and III the dependence is well described by
the power law G oc (A — 1)* with k; = —13.69, krr = 3.84, ks ~ 0.37.
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Conclusions

e Beta functions for all essential coupling in (341)-dimensional Horava
gravity were obtained.

@ The results underwent a number of very powerful checks.
o All the fixed points of RG flow were found.

o A family of trajectories was found. They are connecting AF fixed point in
the UV to the region where the kinetic term has GR form.
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