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Motivation

We study different alternative/completion scenarios to inflation
(A.Starobinsky; A.Guth; A.Linde; K.Sato), because:
▶ inflation has some long-lasting conceptual problems, namely →

geodesic incompleteness (A.Borde, A.Vilenkin);
▶ if we rule alternative scenarios out → it can be another indirect

confirmation of inflation paradigm.
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The Universe with bounce
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T.Qui’2011,2013; D.Easson’2011; Y.Cai’2012;
M.Osipov’2013; M.Koehn’2013; L.Battarra’2014; A.Ijjas’2016;
YA, P.Petrov, V.Rubakov’2021
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Genesis
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P.Creminelli, A.Nicolis, E.Trincherini’2010;
YA, P.Petrov, V.Rubakov’2021
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Non-singular evolution
Null Energy Condition

Realization of non-singular evolution within classical field theory
requires the violation of the Null Energy Condition (NEC)
Tµνnµnν > 0. Consider FLRW Universe, homogeneous and isotropic
matter

T00 = ρ, Tij = a2γijp,

Ḣ = −4πG(ρ+ p) + curvature term.

dρ
dt

= −3H(ρ+ p).

Use nµ = (1, a−1νi) with γijν
iνj = 1 and then NEC leads to

Tµνnµnν > 0 → ρ+ p > 0.

Penrose theorem: singularity in the past.
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Horndeski theory
G. W. Horndeski’1974

Full Horndeski Lagrangian:

L = G2(ϕ,X)− G3(ϕ,X)2ϕ+

G4(ϕ,X)R + G4,X
[
(2ϕ)2 − (∇µ∇νϕ)

2]
+ G5(ϕ,X)Gµν∇µ∇νϕ

− 1
6
G5,X

[
(2ϕ)3 − 32ϕ(∇µ∇νϕ)

2 + 2(∇µ∇νϕ)
3],

where,

X = −1
2
gµν∂µϕ∂νϕ,

2ϕ = gµν∇µ∇νϕ.

For our purposes, it is enough to study a subclass of this theory:

L = G2(ϕ,X)− G3(ϕ,X)2ϕ+ G4(ϕ)R.
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Stability of the model
No-Go theorem

Let us consider the following perturbed ADM metric:

ds2 = −N2dt2 + γij
(
dxi + Nidt

) (
dxj + Njdt

)
,

with

γij = a2(t)e2ζ(δij + hij + . . .), N = N0(t)(1 + α), Ni = ∂iβ.

where hii = 0, ∂ihij = 0. Here α and β are not physical. We work with
unitary gauge δϕ = 0. The quadratic actions for ζ and hij are given,
respectively:

Shh =

ˆ
dtd3x

Na3

8

[
GT

ḣ2
ij

N2 − FT

a2 hij,khij,k

]
,

Sss =

ˆ
dtd3xNa3

[
GS

ζ̇2

N2 − FS

a2 ζ,iζ,i

]
.
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Stability of the model
No-Go theorem

▶ We consider a(t) > const > 0;
▶ No-Go statement: FS,T < 0 at some moment of time, instability

in bounce/genesis models, M. Libanov, S. Mironov, V.
Rubakov’2016; T. Kobayashi’2016; S. Mironov, V. Rubakov, V.
Volkova’2018;

▶ Avoid No-Go:
ˆ t

−∞
a(t)(FT + FS)dt <∞ .
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Strong coupling problem
Validity of classical description?

▶ One way is to go beyond Horndeski and DHOST [Y.Cai et.al.’
2016, P.Creminelli et.al.’2016, R.Kolevatov et.al.’2017, Y. Cai, Y.
Piao’2017; S.Mironov, V.Rubakov, V.Volkova’19,’20,’22]

▶ Another way to avoid No-Go theorem for Horndeski is to obtain
such a model/solution that FS,T coefficients have asymptotics

FS,T → 0 as t → −∞, where FT = 2G4.

▶ This means that
G4 → 0 as t → −∞.

▶ The effective Planck mass (recall that ∆L = G4(ϕ)R and also
GN = 1

M2
Pl

) goes to zero, and it signalizes that we may have
strong coupling at t → −∞.

Solution: no SC regime at t → −∞ in some region of lagrangian
parameters.
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The solution of strong coupling problem
Dimensional analysis

▶ The criteria of validity of classical description:
Classical energy scales ≪ Strong coupling energy scales.

▶ Characteristic classical energy scale → background:
Eclass ∼ H, (or Ḣ

H , or ϕ̇
ϕ ).

▶ Strong coupling energy scales → dimensional analysis of
couplings in higher order action (interactions among scalar and
tensor perturbations):

L(i)
ζζζ ∼ Λ̂i · π3 · (∂t)

ai · (∂)bi , [Λ̂i] = 1 − a − b,

Eζζζ,(i)
strong ∼ Λ̂

− 1
ai+bi−1

i ,

▶ It was shown, that the classical treatment of the background is
legitimate at t → −∞ in a certain range of parameters.

YA, O.Evseev, O.Melichev, V.Rubakov’2018,2020;
YA, P.Petrov, V.Rubakov’2020,2021
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On the strong coupling problem in cosmologies with
“strong gravity in the past”

▶ We examine the potential strong coupling problem at early times
in a contracting cosmological model with “strong gravity in the
past” (Jordan frame), which is conformally related to inflation
(Einstein frame).

▶ From naive dimensional analysis in the Jordan frame one would
conclude that the quantum strong coupling energy scale can be
lower than the classical energy scale.

▶ However, from the Einstein frame prospective, this should not be
the case.

▶ Calculation in the Jordan frame shows cancellations of the
dangerous contributions in the tree level amplitude!
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Contraction conformally related to inflation

▶ We consider a class of contracting models (Jordan frame) that
are conformally related to cosmological inflation.

▶ The action in the Jordan (contraction) frame is given by

Sb =

ˆ
d4x

√
−g

[
P(ϕ,X) +

M2
Pf2(ϕ)

2
R
]
,

with
P(ϕ,X) = ω(ϕ)X − V(ϕ),

ω(ϕ) = f2 − 6M2
P

(
df
dϕ

)2

, V(ϕ) = f4(ϕ)VI(ϕ) .

▶ By conformal transformation

gµν = f−2(ϕ)gIµν

the theory with Sb is related to the following inflationary model
in the Einstein (inflation) frame:

SI =
1
2

ˆ
d4x

√
−gI

[
M2

PRI − gµv
I ∂µϕ∂νϕ− 2VI(ϕ)

]
.
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Inflation in Einstein frame

▶ We consider inflation potential that flattens out at large fields,

VI(ϕ) → V∞, as ϕ→ ∞ ; V∞ ≪ M4
P ,

▶ Inflation occurs in the slow roll regime at early times (ϵ, η ≪ 1):

ϵ =
(V′

I)
2M2

P
2V2 , η =

V′′
I M2

P
V

.

▶ The slow roll equations are

dϕ(τ)
dτ

= −MPV′
I√

3VI
, HI =

√
VI

3
1

MP
,

where τ is a cosmic time in this frame.
▶ For asymptotically flat inflaton potentials, one typically has
η ≫ ϵ (or VIV′′

I ≫ (V′
I)

2).
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Contraction in Jordan frame

▶ Choose the function defining the conformal transformation as
follows

f(ϕ) = f0exp
[
− (α+ 1)

M2
P

ˆ
dϕ

VI

V′
I

]
, α > 0.

▶ Then the Jordan frame metric is

ds2 = f−2(ϕ(τ))dτ2 − f−2(ϕ(τ))a2
I (τ)dx2,

where aJ ≡ f−1aI is corresponding scale factor in Jordan frame,
and the differential of cosmic time in this frame is given by f−1dτ .

▶ So, the Hubble parameter in the Jordan frame is given by

H = f
d
dτ

ln(aIf−1) = −f · α

MP

√
VI

3
.
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Strong coupling
Dimensional analysis

The terms in the cubic action for scalars, which do not vanish in our
model are:

S(3) =

ˆ
dtd3x a3

{
C1ζζ̇

2 +
1
a2 C2ζ(∂ζ)

2 + C4ζ̇ (∂iζ) (∂iX ) + C5∂
2ζ(∂X )2

}
,

where ∂2 = ∂i∂i and ∂2X = ζ̇

C1 = f2 · M6
P(V

′
I)

2

4V4
I

(
4VIV′′

I − 3(V′
I)

2),
C2 = f2 · M6

P(V
′
I)

2

4V4
I

(
5(V′

I)
2 − 4VIV′′

I
)
,

C4 = f2
M6

P(V
′
I)

4

16V6
I

(
M2

P(V
′
I)

2 − 8V2
I
)
,

C5 = f2
M8

P(V
′
I)

6

32V6
I

.
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Strong coupling
Dimensional analysis

▶ The classical energy scale is of order of the Hubble parameter:

|E(class)| = |H| ∼ f
√

VI

MP
.

▶ To obtain an estimate of the strong coupling scale through naive
dimensional analysis, we set, at a given moment of time, a = 1
and introduce canonically normalized field ζc =

√
2GSζ.

▶ In terms of the canonically normalized field, the cubic action still
has the previous form with the replacement

C̃i = (2GS)
−3/2Ci ,

so that

C̃1 =
1
f
· (−3(V′

I)
2 + 4VIV′′

I )

4VIV′
I

, C̃2 =
1
f
· (5(V

′
I)

2 − 4VIV′′
I )

4VIV′
I

,

C̃4 ∼ 1
f
· V′

I
VI

, C̃5 ∼ 1
f
· M2

Pl

(
V′

I
VI

)3

.
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Strong coupling
Dimensional analysis

▶ All operators in the resulting cubic Lagrangian are dimension-5,
so one immediately finds naive estimates for the associated strong
coupling scales

E(naive)
i ∼ |C̃i|−1 .

▶ Naively, the most relevant of these scales are the lowest ones,
which are associated with the largest Ci.

▶ The two naive strong coupling scales (coming from C1,2) are of
the same order:

E(naive) ∼ f
V′

I
V′′

I
.

▶ Depending on the shape of the inflaton potential, classical energy
scale may exceed strong coupling energy scale! For instance,
consider VI = V∞

(
1 − eϕ

2/µ2
)
. Arrive to

E(naive)

E(class) ∼ µ2

ϕHI
,

which is less than 1 at large ϕ. Strong coupling regime?
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Strong coupling
Analysis of the amplitudes

▶ If not for the Einstein frame considerations, one would be
tempted to dismiss such a model!

▶ However, using amplitudes analysis one finds that there are
strong cancellations. Indeed, it is straightforward to calculate
2 → 2 scattering amplitude.

▶ But firstly, we note, if we set, e.g. C̃2 = 0, then the matrix
element would be given by

MC̃1 ; C̃2=0 = −E2

f2
·
(9x2 − 5)

(
3(V′

I)
2 − 4VIV′′

I
)2

64(x2 − 1)V2
I (V

′
I)

2 , x ≡ cosθ,

so the partial wave amplitudes

a(l) =
1

32π

ˆ
dx Pl(x)MC̃1 ; C̃2=0,

would hit the unitarity bound |a(l)| = 1/2 (C.Grojean’07) at
E ∼ E(naive).
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Strong coupling
Analysis of the amplitudes

▶ However, there are strong cancellations. Indeed,

Ms = −E2

4
(3C̃1 + C̃2)

2 , Mt =
E2

2(1 − x)

[
C̃1 + C̃2(2 − x)

]2
,

Mu =
E2

2(1 + x)

[
C̃1 + C̃2(2 + x)

]2
,

M = Ms + Mt + Mu =
E2

f2
· (41x2 − 45)(V′

I)
2 − 40(x2 − 1)VIV′′

I
16(x2 − 1)V2

I
.

▶ We see that the strong coupling scale is actually given by
(recalling VIV′′

I ≫ (V′
I)

2)

E(strong) ∼ f ·
(

VI

V′′
I

)1/2

∼ f · MPl

η1/2 .

▶ As anticipated, this scale is much higher than the classical energy
scale (f

√
VI)/MPl for VI ≪ M4

Pl .
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Unitarity relation and unitarity bounds for scalars
with different sound speeds

▶ Only scalars were considered - However, in cosmological models
we have different types of perturbations!

▶ Thus, we consider a theory which contains massless scalar fields
with different sound speeds.

▶ We derive unitarity relations for partial wave amplitudes of
2 → 2 scattering, with explicit formulas for contributions of
two-particle intermediate states.

▶ Making use of these relations, we obtain unitarity bounds both in
the most general case and in the case considered in literature for
unit sound speed.

▶ These bounds can be used for estimating the strong coupling
scale of a pertinent EFT.
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Unitarity relation and unitarity bounds for scalars
with different sound speeds

▶ The quadratic action reads

S =
∑

i

Sϕi , Sϕi =

ˆ
d4x

(
1
2
ϕ̇i

2 − 1
2
u2

i (∇⃗ϕi)
2
)
.

▶ Now, we consider an initial state:

|ψ, β⟩ =
√

2Ep1

√
2Ep2a

†
p1

a†p2
|0⟩ ,

and the same form we have for the final state |ψ′, β′⟩.
▶ Notation β refers to the types of the two particles, β = {ϕi, ϕj},

while notation ψ is a shorthand for the pair of momenta,
ψ = {p⃗1, p⃗2}.
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Unitarity relation and unitarity bounds for scalars
with different sound speeds
▶ Unitarity of S-matrix, SS† = S†S = 1 implies

T − T† = iTT† = iT†T .

▶ In terms of two-particle state of definite angular momentum one
has

−i
(
T(l)

m′β′;mβ − T(l) ∗
mβ;m′β′

)
=

ˆ
d4P ′′

∑
m′′,β′′

1
N(β′′)

T(l)
m′β′;m′′β′′T(l) ∗

mβ;m′′β′′ ,

▶ Then, finally, in terms of PWA

− i
2
(
al,αβ − a∗l,βα

)
=

∑
γ

2
u1γu2γ(u1γ + u2γ)

al,αγa∗l,βγ ,

Im al,αβ =
∑
γ

2
u1γu2γ(u1γ + u2γ)

al,αγa∗l,γβ , distinguishable particles,

Im al,αβ =
∑
γ

1
2u3

γ

al,αγa∗l,γβ , identical particles.
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Unitarity relation and unitarity bounds for scalars
with different sound speeds
▶ Finally, the generalization of the PWA unitarity relation is

Im al,αβ =
∑
γ

al,αγ
gγ

uγ1uγ2(uγ1 + uγ2)
a∗l,γβ ,

where gγ = 2 if these intermediate particles are distinguishable
and gγ = 1 if these particles are identical.

▶ Upon redefining

ã(l)αβ =

(
gα

uα1uα2(uα1 + uα2)

)1/2

a(l)αβ

(
gβ

uβ1uβ2(uβ1 + uβ2)

)1/2

,

Im ã(l) = ã(l)ã(l) † .
▶ The most stringent tree level unitarity bound is obtained for the

largest eigenvalue of the tree level matrix ã(l) (which is real and
symmetric). This bound reads

|maximum eigenvalue of ã(l)| ≤ 1
2
.
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Conclusion and outlook

▶ It was shown that naive dimensional analysis of strong coupling
provides wrong results... One had better to use the analysis of
diagrams/amplitudes in order to find strong coupling energy
scale.

▶ Useful (for cosmological context) unitarity relations and bound
were obtained in the theory which contains massless scalar fields
with different sound speeds.

▶ An application of unitarity bound for real cosmological model of
early Universe without initial singularity → Pavel Petrov talk!

▶ Even some inflation models (e.g. some class of k-inflation) may
suffer from strong coupling → accurate investigation of this
problem (YA, P. Petrov, in preparation), new constraints on
k-inflation model?
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Thank you for your attention!
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Null energy condition
Non-singular cosmology

Let us consider general relativity

Gµν = 8πGTµν ,

in the cosmological context with

ds2 = dt2 − a2γijdxidxj,

and isotropic and homogeneous matter, filling the Universe

T00 = ρ, Tij = a2γijp,

then it follows from the combinations of (00) and (ij) components of
the Einstein equations that

Ḣ = −4πG(ρ+ p) + curvature term,

where H is the Hubble parameter.
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Null energy condition
Non-singular cosmology

Ḣ = −4πG(ρ+ p) + curvature term,

An important characteristic here is the null energy condition (NEC)
for the matter energy-momentum tensor Tµν :

Tµνkµkν ≥ 0,

for every null vector kµ. Let us use kµ = (1, a−1νi) with γijν
iνj = 1

and then NEC leads to

ρ+ p ≥ 0 → Ḣ ≤ 0.

Another example comes from the conservation of energy and
momentum

∇µTµν = 0 → dρ
dt

= −3H(ρ+ p).
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Null energy condition
Non-singular cosmology

▶ This implies that there is a singularity for H and ρ in the past of
the expanding universe;

▶ Therefore, one either modifies gravity or violates the NEC to
build non-singular cosmology;

Let’s violate NEC!
However, violating the NEC in a healthy manner turns out to be
challenging for any known matter.

▶ For canonical scalar field we have

ρ+ p = ϕ̇2 ≥ 0

and NEC is automatically satisfied;
▶ Try something new, but always demand stable cosmology...
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Types of instabilities

Let us consider for the simplicity the general form of the second order
action for the scalar field perturbations ϕ = ϕ0 + χ:

L(2)
χ =

1
2
Uχ̇2 − 1

2
V(∂iχ)

2 − 1
2
Wχ2,

with
Uω2 = V−→p 2 + W, c2

χ = V/U,

where U,V,W are some combinations of unperturbed lagrangian
functions. Here we have the following cases:
▶ Stable solution U > 0, V > 0, W ≥ 0 with ρ > 0.

Use U > V > 0 to avoid superluminal propagation;
▶ Gradient instabilities U > 0, V < 0 or U < 0, V > 0;
▶ Ghost instabilities U < 0, V < 0.
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Stability of model
No-Go theorem

Let us write all parts of third action straightway with the constraints
imposed for scalar perturbations α and β:

α =
GT

Θ

ζ̇

N
,

β =
1

aGT

(
a3GSψ − aG2

T
Θ

ζ

)
,

with ψ := (1/N)∂−2ζ̇. The quadratic actions for ζ and hij are given,
respectively:

Lζζ = a3

[
GS

ζ̇2

N2 − FS

a2 ζ,iζ,i

]
,

Lhh =
a3

8

[
GT

ḣ2
ij

N2 − FT

a2 hij,khij,k

]
.
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Stability of model
No-Go theorem

There FS,GS,FT,GT are given by:

FT = 2G4 + ..., GT = 2G4 + ...,

and
FS =

1
a

d
dt

( a
Θ
G2

T

)
−FT, GS =

Σ

Θ2G
2
T + 3GT,

where Σ and Θ are some cumbersome expression of G2, G3, G4 and
H. Stability conditions are:

GT ≥ FT > 0, GS ≥ FS > 0.

Denote ξ = aG2
T/Θ, we rewrite FS as

FS =
1
a

dξ
dt

−FT → dξ
dt

> aFT > 0
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Stability of model
No-Go theorem

dξ
dt

> aFT > 0, ξ = aG2
T/Θ,

Here |Θ| <∞ everywhere and it is smooth function of time (as it is
function of ϕ and H), so ξ can never vanish (except a = 0) → thus we
demand non-singular model. Integrating from some ti to tf , we obtain:

ξ(tf)− ξ(ti) >
ˆ tf

ti
a(t)FTdt,

where a > const > 0 for t → −∞ and it is increasing with t → +∞.
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Stability of model
No-Go theorem

ξ(tf)− ξ(ti) >
ˆ tf

ti
a(t)FTdt,

▶ Let ξi < 0, so

−ξf < |ξi| −
ˆ tf

ti
aFTdt,

where RHS → negative with tf → +∞. So therefore ξf > 0. And
it means that ξ = 0 at some moment of time - singularity! So we
should demand ξ > 0 for all times.

▶ But on the other had, again just rewritting:

−ξi > −ξf +
ˆ tf

ti
aFTdt,

and now RHS → positive with ti → −∞ and ξi must be negative.
Again contradiction...
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Stability of model
No-Go theorem

Thus we have two important features here:
1.ξ ̸= 0,

2.dξ/dt > aFT > 0.
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Strong coupling problem
Avoiding No-Go

G2 =A2 − 2XFϕ,
G3 =− 2XFX − F,
G4 =B4,

where F(ϕ,X) is an auxiliary function, such that

FX = − A3

(2X)3/2
− B4ϕ

X
,

Gauge is fixed by ϕ = ϕ(t) and it gives:

N−1 =

√
2X

ϕ̇(t)
.
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Nonsingular cosmological models

We construct various models, namely:
▶ bouncing Universe which proceeds through inflationary epoch to

kination (expansion within general relativity, driven by massless
scalar field);

▶ bouncing Universe with kination stage immediately after bounce;
▶ combination of genesis and bounce, with the Universe starting

from flat space-time, then contracting and bouncing to the
expansion epoch;

▶ “standard” genesis evading the strong coupling problem in the
past.
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Bouncing Universes

In covariant formalism:

L = G2(ϕ,X)− G3(ϕ,X)2ϕ+ G4(ϕ)R,

In ADM formalism:

L = A2(t,N) + A3(t,N)K + A4(t)(K2 − K2
ij) + B4(t)R(3).

▶ Ansatz:

A2 =
1
2
f−2µ−2 · a2(t,N),

A3 =
1
2
f−2µ−1 · a3(t,N),

A4 = −B4 = −1
2
f−2µ,

a2(t,N) =
(x(t)

N2 +
v(t)
N4

)
, a3(t,N) =

y(t)
N3 .

Yulia Ageeva | On the strong coupling problem in cosmologies with “strong gravity in the past”, RSF 19-12-00393



37

Bounce followed by inflation
Numerical example: Hubble parameter

-10000 10000 20000 30000 40000
t

2

4

6

8

10

12

H⨯105

Hubble parameter at contraction, bounce, and beginning of inflation.
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Bounce followed by inflation
Numerical example: Subluminality for scalars and stability for tensors

-10000 -5000 5000 10000 15000
t

0.2

0.4

0.6

0.8

1.0

cS

Contraction, bounce, and beginning of inflation.
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Bounce followed by inflation
Numerical example
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�

�

�

�

�⨯���

Hubble parameter at the end of inflation and beginning of kination.
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Bounce model: from inflation to kination
Numerical example: stability for scalars

1.54×106 1.56×106 1.58×106 1.6×106
t

0.2

0.4

0.6

0.8

cS

The end of inflation and beginning of kination.
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Bounce followed by inflation
Numerical example

▶ To end up this bouncing model, we note that since the duration
of inflation is fairly long, the complete expressions for all
Lagrangian functions, valid at all times, are obtained by simple
superpositions, i.e.

x(t) = x0(1 − Ux(t)) + x1Ux(t)
(
1 − V(t − t∗)

)
+ x2

V(t − t∗)
(t − t∗)2

,

▶ Depending on the parameters of the model, inflation can last for
a longer or shorter time.

▶ Note that this property may be of interest from a
phenomenological viewpoint.

▶ We take, quite arbitrarily, the duration of inflation approximately
equal to ∆tinf ≈ 1.55 · 106 (in Planck units).

▶ It corresponds to the number of e-foldings at inflation
Ne = N1H1∆tinf ≈ 46.
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Strong coupling: dimensional analysis

▶ In unitary gauge, the scalar perturbation is parameterized with
the field ζ, recall

ds2 = −[(1 + α)2 − a−2e−2ζ(∂ψ)2]dt2 + 2∂iψdtdxi + a2e2ζdx2 ,

so the quadratic action for scalar perturbation is

S(2)
ζζ =

ˆ
dtd3xa3GS

[
ζ̇2 − 1

a2 ζ,iζ,i

]
,

where

GS =
1
2
ϕ̇2

H2
I
=

f2

2H2
I

(
dϕ
dτ

)2

= f2 · M4
P(V

′
I)

2

2V2
I

.

▶ The perturbations propagate luminally, which is again a Jordan
frame counterpart of the standard Einstein frame property.
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Relations

ϕi(⃗x, t) =
ˆ

dp⃗i

(2π)3
1√
2Epi

(
ap⃗ie

−iEpi t+i⃗pix⃗ + a†p⃗i
eiEpi t−i⃗pix⃗

)
,

Epi = uipi , (1)

[ap⃗ ′
i
, a†p⃗j

] = (2π)3δ(3)(p⃗ ′
i − p⃗j)δij. (2)

|⃗pi ⟩ ≡
√

2Epia
†
p⃗i
|0⟩ ,

⟨p⃗ ′
j|p⃗ i⟩ = (2π)3

√
2Ep′

j
2Epiδ

(3)(p⃗i − p⃗ ′
j )δij. (3)

1 =

ˆ
d3pi

(2π)32Epi

|p⃗ i⟩ ⟨p⃗ i| .
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Unitarity relation and unitarity bounds for scalars
with different sound speeds
Distinguishable particles

▶ The scalar product of states |ψ′, β′⟩ and |ψ, β⟩ is

⟨ψ′, β′ |ψ, β ⟩ = (2π)62Ep12Ep2δ
(3)(p⃗1

′ − p⃗1)δ
(3)(p⃗2

′ − p⃗2)δβ′β ,

or in center-of-mass frame, where E = (u1β + u2β)p, u1β ≡ ui,
u2β ≡ uj

⟨ψ′, β′ |ψ, β ⟩

= (2π)6 · 4u1βu2β(u1β + u2β) · δ(4)(Pµ ′ − Pµ)δ(2)(ˆ⃗p ′ − ˆ⃗p)δββ′ .

▶ Two-particle state of definite angular momentum in the
center-of-mass frame

|l,m,Pµ, β⟩ = 1√
4π

ˆ
dˆ⃗p Ym

l (ˆ⃗p) |ψ , β⟩ ,

so

⟨l′,m′,Pµ ′, β′|l,m,Pµ, β⟩
= 4πu1βu2β(u1β + u2β) · (2π)4δ(4)(Pµ ′ − Pµ)δll′δmm′δββ′ .
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Unitarity relation and unitarity bounds for scalars
with different sound speeds
Distinguishable particles

▶ Let us now write the T-matrix element

T(l)
m′β′;mβ = ⟨l,m′,Pµ ′, β′|T|l,m,Pµ, β⟩ .

T(l)
m′β′;mβ =

1
4π

ˆ
dˆ⃗p
ˆ

dˆ⃗p ′ Ym
l (ˆ⃗p )Ym′ ∗

l (ˆ⃗p ′) ⟨ψ ′, β′|T|ψ, β⟩ .

▶ After some calculations we arrive to

T(l)
m′β′;mβ = (2π)4δ(4)(Pµ ′ − Pµ)

δm′m

2

ˆ
d(cos γ) · Pl(cos γ)Mβ′β .

▶ Finally, one defines the partial wave amplitude,

al,β′β =
1

32π

ˆ
d(cos γ) · Pl(cos γ)Mβ′β ,

and finds

T(l)
m′β′;mβ = 16π · (2π)4δ(4)(Pµ ′ − Pµ)δm′m al,β′β .
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Unitarity relation and unitarity bounds for scalars
with different sound speeds
Distinguishable particles

▶ Now we turn to the unitarity relation. Unitarity of S-matrix,
SS† = S†S = 1 implies

T − T† = iTT† = iT†T .

▶ Inserting unit operator

1 =

ˆ
d4P

∑
l,m,β

|l,m,Pµ, β⟩ ⟨l,m,Pµ, β| 1
N(β)

+ . . . ,

where where summation runs over all two-particle states, and

N(β) ≡ 2(2π)5u1βu2β(u1β + u2β).

in the right-hand side

−i
(
T(l)

m′β′;mβ − T(l) ∗
mβ;m′β′

)
=

ˆ
d4P ′′

∑
m′′,β′′

1
N(β′′)

T(l)
m′β′;m′′β′′T(l) ∗

mβ;m′′β′′ .
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Unitarity bound

Im ãl,αα = ãl,ααã∗l,αα +
∑
M

Al,αMA∗
l,Mα .

Im ãl,αα ≥ |ãl,αα|2 .(
Im ãl,αα − 1

2

)2

+ (Re ãl,αα)
2 ≤ 1

4
,

|Re ãl,αα| ≤
1
2
, (4)
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Unitarity relation: example

L =
1
2

(
ϕ̇2

1 − u2
1(∇⃗ϕ1)

2
)
+

1
2

(
ϕ̇2

2 − u2
2(∇⃗ϕ2)

2
)
+
λ1

4!
ϕ4

1+
λ2

4!
ϕ4

2+
λ3

4
ϕ2

1ϕ
2
2 ,

(5)
where u1 and u2 are the two sound speeds.

Im al,αβ =
∑
γ

gγal,αγa∗l,γβ ,

or in matrix form
Im al =

∑
γ

alga†l , (6)
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Unitarity relation: example

Mtree =

Mαα Mαβ Mαγ

Mβα Mββ Mβγ

Mγα Mγβ Mγγ

 =

λ1 0 λ3
0 λ3 0
λ3 0 λ2

 .
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Unitarity relation: example
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