Effectively flat potential in the Friedberg-Lee-Sirlin model.

Eduard Kim ${ }^{1}$, Emin Nugaev ${ }^{2}$
1 MIPT
2 INR
based on e-Print: 2309.09661

Outline

(1) Introduction

- Single field models
- True story
(2) Effective potential
(3) Comparison for profiles

4 Beyond Effective potential
(5) Results

Single field models

Static solutions

- ϕ^{4}-kink in $(1+1)$ dimensions;

Kink profile.
$\mathcal{L}=\partial_{\mu} \phi \partial^{\mu} \phi-\frac{\lambda}{2}\left(\phi^{2}-v^{2}\right)^{2}$

Stationary solutions

- Q-balls in any dimensions;

Q-ball profile in one spatial dimension. $\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-V\left(\phi^{*} \phi\right)$

Rosen(1968), Coleman's condidions (1985). Overshoot and undershoot. Unrenormalizable potential. UV compleetion is needed?

True theory (FLS)

Friedberg-Lee-Sirlin (FLS) model (1976) provides non-topological solitons in $(3+1)$ dimensions. Renormalizable theory in $(3+1)$: quartic couplings. Very good for semiclassical consideration.

$$
\begin{aligned}
& \mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi+\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi-V\left(\phi^{*} \phi, \chi\right) \\
& V\left(\phi^{*} \phi, \chi\right)=h^{2}|\phi|^{2} \chi^{2}+\frac{m^{2}}{2}\left(\chi^{2}-v^{2}\right)^{2}
\end{aligned}
$$

Symmetries:
global $U(1)$ for complex field $\phi, \phi \rightarrow \mathrm{e}^{i \alpha} \phi$, discrete \mathcal{Z}_{2} for real $\chi, \chi \rightarrow-\chi$.

Single field from FLS

Ansatz $\phi(t, \vec{x})=e^{-i \omega t} f(\vec{x}), \chi(t, \vec{x})=\chi(\vec{x})$, Eq. of motion for FLS

$$
\begin{align*}
& \nabla^{2} f=h^{2} \chi^{2} f-\omega^{2} f \\
& \nabla^{2} \chi=2 h^{2} f^{2} \chi+2 m^{2}\left(\chi^{2}-v^{2}\right) \chi \tag{1}
\end{align*}
$$

Heavy χ : the mass $m_{\chi}=m v$ is large.
Omit gradient terms!

$$
\left\{\begin{array}{l}
\chi=0, \tag{2}\\
\chi^{2}=v^{2}-\frac{h^{2}}{m^{2}}|\phi|^{2}
\end{array}\right.
$$

Two branches for solution. The matching is needed!

$$
\begin{equation*}
V_{\text {eff }}=\left(m_{\phi}^{2}|\phi|^{2}-\frac{h^{4}}{2 m^{2}}|\phi|^{4}\right) \theta\left(\frac{m v}{h}-|\phi|\right)+\frac{m^{2} v^{4}}{2} \theta\left(|\phi|-\frac{m v}{h}\right) \tag{3}
\end{equation*}
$$

Effective potential. Just compare with parabolic piece-wise potential of the Rosen (1968) model, which is integrable in any dimensions.

Comparison of integral characteristics

In $(1+1)$ dimensions

Energy as function of global charge for FLS non-topological solitons, for
$\ln (3+1)$ dimensions
 Q-balls in effective and parabolic piece-wise potential.

Comparison (numerical cartoons) for profiles

Q-ball on domain wall

One can use full EOM for the field χ (with gradient terms) and put in Lagrangian $\partial_{\mu} \chi \partial^{\mu} \chi \rightarrow-\chi \partial_{\mu} \partial^{\mu} \chi, \partial_{\mu} \partial^{\mu} \chi \rightarrow-\frac{\partial V\left(|\phi|^{2}, \chi\right)}{\partial \chi}$

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi+\frac{m^{2}}{2}\left(\chi^{4}\left(|\phi|^{2}\right)-v^{4}\right) \tag{4}
\end{equation*}
$$

The same profile for the effective potential (using constant solutions). But one can use kink solution for χ, assuming constant $|\phi|,|\phi| \leq \frac{m v}{h}$:

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi+\frac{m^{2}}{2}\left(\left(v^{2}-\frac{h^{2}}{m^{2}}|\phi|^{2}\right)^{2} \tanh ^{4}\left(m x \sqrt{v^{2}-\frac{h^{2}}{m^{2}}|\phi|^{2}}\right)-v^{4}\right)
$$

Matching at $|\phi|=\frac{m v}{h}$

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-\frac{m^{2} v^{4}}{2}
$$

for large values of the complex field

Improved method works better than effective potential! Result can be checked perturbatively.

Results and outlook

- FLS model is very good lab for EFT methods (both classical and quantum);
- Effective potential is quite effective for inhomogeneous configurations;
- Vacuum rearrangement on the domain wall can be studied by easy improvement in non-perturbative regime.

THANK YOU

This work was supported by the grant RSF-22-12-00215

