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Matrix models 30 year ago: basic properties

Partition function of matrix models is a τ -function of integrable hierarchy

It satis�es an in�nite set of Ward identities forming Virasoro or W -algebras

Both properties survive (double scaling) continuum limits!
⇓

They are suitable for describing universality classes

Ward identities are solvable.
This is because these universality classes describe topological theories, for instance, 2d gravity with
matter = string theory.

Both properties are very general and are not related to particular matrix models.
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New properties of matrix models

Superintegrability

W -representation of the partition function

The W -representation provides a connection with integrable many-body systems (like the rational
Calogero system).

Both properties are related to concrete models, allow one to construct explicit solutions and are present
in all known solvable examples.
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Basic example: Hermitian one-matrix model

∫
dH exp [ −TrV (H) ]

H is N ×N Hermitian matrix.
V (H) is a potential such that the integrals converges at suitable choices of integration contours.

Invariant correlators 〈∏
i

TrHki
〉

=

∫
dH exp [ −TrV (H) ]

∏
i

TrHki

Normalization:
〈

1
〉

= 1.

Generating function of correlators

ZN (tk) =

〈
exp

[∑
k

tkTrH
k

]〉
=

∫
dH exp

[
−TrV (H) +

∑
k

tkTrH
k

]
It is understood as a power series in parameters (sources) in tk.
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Integrability

Key property: determinant representation:

ZN (tk) = det
1≤i,j≤N

Ci+j−2

Moment matrix

Cn =

∫
dhhn exp

[
−V (h) +

∑
k

tkh
k

]
ZN (tk) is a τ -function of the Toda chain hierarchy. tk are time variables of the hierarchy.

De�ne

eϕN =
ZN+1(tk)

ZN (tk)

Then
∂2ϕN
∂t21

= eϕN+1−ϕN − eϕN−ϕN−1
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Ward identities=Virasoro constraints

1) Make a rede�nition of parameters tk's (for a polynomial V (H)):

−TrV (H) +
∑
k

tkTrH
k −→

∑
k

tkTrH
k

2) Note that integral of full derivative is zero:∫
dHTr

∂

∂H

(
Hn+1 exp

[ ∑
k

tkTrH
k

])
= 0

It is written in the form(∑
k

ktk
∂

∂tk+n
+

a+b=n∑ ∂2

∂ta∂tb

)
︸ ︷︷ ︸

Ln

∫
dH exp

[ ∑
k

tkTrH
k

]
= 0

[Ln, Lm] = (n−m)Ln+m − Virasoro algebra
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Solutions of matrix models

Matrix model integrable hierarchies have many solutions.

The Ward identities for non-Gaussian V (H) have many solutions.

Example of V (H) = H3 (Dijkgraaf-Vafa solution) gives rise to the Airy type integrals∫
dheh

3+...

There are two choices of integration contours C1 and C2.
The partition function is labeled by N1 and N2 (N1 +N2 = N).

New results in matrix models are associated with concrete choices of V (H) and integration

contours. They provide a procedure of solving with these data �xed.
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Superintegrability

In classical mechanics:

Integrability: there are N integrals of motion in involution

⇓ Liouville theorem

The equations of motion are solved in quadratures

Superintegrability: there are more than N integrals of motion. Usually, it gives rise to explicit
solutions.

An example: in the Coulomb system, there is an additional integral, the well-known Laplace-Runge-Lenz
vector (the potential is V = − gr , ~L is the angular momentum vector),

~p× ~L− gm~r

Superintegrability in matrix models:

For many/all (?) potentials, there is a basis that admits explicit expressions for arbitrary correlators.
There is a hidden symmetry similarly to the Coulomb system case.
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Gaussian Hermitian one-matrix model: V (H) = −1
2H

2

The basis is given by Schur functions.
The Schur functions SR are symmetric polynomials of eigenvalues of the matrix H, or graded
polynomials of TrHk. They form a complete basis in the space of graded invariant polynomials. They
are labeled by partitions, or Young diagrams R: R1 ≥ R2 ≥ . . . ≥ Rl > 0. Examples:

S∅ = 1

S[1] = TrH

S[2] =
(TrH)2

2
+

TrH2

2

S[1,1] =
(TrH)2

2
− TrH2

2
General formula:

exp

[∑
k

pk
k
zk

]
=
∑
i

hi(pk)zi

SR(pk) = det
i,j

hRi−i+j(pk) pk −→ TrHk
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Superintegrability in the Gaussian model

Formula for the general correlator:〈
SR(TrHk)

〉
=
SR(pk = N)SR(pk = δk,2)

SR(pk = δk,1)

The point is that the Schur function SR is the character of the linear group GL(N) in the
representation labeled by the Young diagram R. Hence, averages of characters are proportional to
characters at peculiar points.

The partition functions is

ZN (tk) =
∑
R

SR(pk = N)SR(pk = δk,2)

SR(pk = δk,1)
SR(pk = ktk)

due to the Cauchy identity:

exp

[∑
k

tkTrH
k

]
=
∑
R

SR(TrHk)SR(pk = ktk)

A.Mironov (LPI/ITEP) Recent Progress in Matrix Models 2023 10 / 16



More examples of superintegrability

Various other examples of superintegrable models. Choosing non-Gaussian potentials:

Hermitian matrix model with monomial V (H). The basis is still given by the Schur polynomials〈
SR

〉
a

=

∫
Ca

SR(TrHk) · e− 1
s trHsdH = SR(pk = δk,s) ·

∏
(α,β)∈R

[[N + α− β]]s,0 · [[N + α− β]]s,a

for N = 0 or = a mod s, and [[n]]s,a = n if n = a mod s and = 1 otherwise.

Logarithmic potentials:〈
SR(TrHk)

〉
=

∫
SR(TrHk) exp

[
uTr logH+vTr log(1−H)

]
dH =

SR(pk = N) · SR(pk = u+N)

SR(pk = u+ v + 2N)

Potential that is a square of logarithm:〈
SR

〉
:=

∫
SR(TrHk) exp

[
−Tr(logH)2

2g2

]
dH = A|R|q2κR · SR

(
pk =

Ak −A−k

qk − q−k

)
where κR =

∑
(µ,ν)∈R(µ− ν), q =exp

(
g2

2

)
and A = qN .
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Examples of models with the same superintegrability properties:

Models depending on the external matrix. One example is∫
SR(TrHk) exp

[
−1

2
TrAHAH

]
dH =

SR(pk = TrA−k) · SR(pk = δk,2)

SR(pk = δk,1

Here the basis is still given by the Schur functions.
Another example is the generalized Kontsevich models. The basis in the second case is given by the
Hall-Littlewood polynomials at special values of the parameter.

Complex matrix model instead of the Hermitian one. The basis is still given by the Schur
polynomials:∫

SR(Tr(ZZ†)k) exp
[
−TrAZBZ†

]
d2Z =

SR(pk = TrA−k) · SR(pk = TrB−k)

SR(pk = δk,1

Models of orthogonal and real matrices, and, generally, the β-ensemble instead of matrix model.
The basis is given by the Jack polynomials. There is also further deformation to the (q, t)-matrix
models and the Macdonald polynomials.

Tensor models instead of matrix models. The basis is given by the generalized characters.
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W -representation

The second newly discovered property of the matrix models is their W -representation. In the Gaussian
Hermitian matrix model case, it is∫

dH exp

[
−1

2
TrH2 +

∑
k

tkTrH
k

]
= e

1
2 Ŵ2 · 1

with

Ŵ2 =
∑
k

kltktl
∂

∂tk+l−2
+
∑
k,l

(k + l + 2)tk+l+2
∂2

∂tk∂tl
+ 2N

∑
k

(k + 2)tk+2
∂

∂tk
+ 2N2t2 +Nt21

One can see that

e
1
2 Ŵ2 · 1 =

∑
R

SR(pk = N)SR(pk = δk,2)

SR(pk = δk,1)
SR(pk = ktk)

In the variables qi: tk = 1
k

∑N
i qi, one obtains the rational Calogero Hamiltonian at the free fermion

point:

Ŵ2 =
∑
i

∂2

∂q2
i

+ 2
∑
i 6=j

1

qi − qj
∂

∂qi
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In�nite commutative family of W -operators

There is an in�nite commutative family of Ŵp:

[Ŵp, Ŵp′ ] = 0

These operators are elements of the W1+∞ algebra.

They induce a two-matrix model generalization:

ZN (tk, t̄k) = e
∑
k t̄kŴk · 1 =

∫
dXdY exp

[
TrXY +

∑
k

(
tkTrX

k + t̄kTrY
k
)]

where X is Hermitian matrix and Y is anti-Hermitian.
The superintegrability gives rise to the expansion

ZN (tk, t̄k) =
∑
R

SR(pk = N)SR(pk = kt̄k)SR(pk = ktk)

SR(pk = δk,1)

The reduction to the Gaussian case is immediate: t̄k = 1
2δk,2.
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Rational Calogero many-body system

Rational Calogero many-body system is superintegrable, and its Hamiltonians are just Ŵk!

How to introduce an arbitrary Calogero coupling? Integration over angular variables:∫
dH exp

[
−TrV (H) +

∑
k

tkTrH
k

]
∼
∫

∆(x)2
N∏
i

exp

[
−V (xi) +

∑
k

tkx
k
i

]
dxi

where xi are the eigenvalues of the matrix H, ∆(x) =
∏
i<j(xi − xj) is the Vandermonde determinant.

β-ensemble:

Z
(β)
N (tk) =

∫
∆(x)2β

N∏
i

exp

[
−V (xi) +

∑
k

tkx
k
i

]
dxi

The Gaussian β-ensemble with V (x) = 1
2x

2 has the W -representation

Z
(β)
N (tk) = e

1
2 Ŵ

(β)
2 · 1

and, once again in variables qi, one obtains the rational Calogero Hamiltonian at arbitrary coupling

∆(q)βŴ
(β)
2 ∆(q)−β =

∑
i

∂2

∂q2
i

− 2β(β − 1)
∑
i 6=j

1

(qi − qj)2
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Thank you for your attention!
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