Recent Progress in Matrix Models: a brief review

Andrei Mironov
P.N.Lebedev Physics Institute,
IITP and ITEP at NRC "Kurchatov Institute"

Yerevan, 2023

Matrix models 30 year ago: basic properties

- Partition function of matrix models is a τ-function of integrable hierarchy
- It satisfies an infinite set of Ward identities forming Virasoro or W-algebras

Both properties survive (double scaling) continuum limits! \Downarrow
They are suitable for describing universality classes

Ward identities are solvable.
This is because these universality classes describe topological theories, for instance, $2 d$ gravity with matter $=$ string theory.

Both properties are very general and are not related to particular matrix models.

New properties of matrix models

- Superintegrability
- W-representation of the partition function

The W-representation provides a connection with integrable many-body systems (like the rational Calogero system).

Both properties are related to concrete models, allow one to construct explicit solutions and are present in all known solvable examples.

Basic example: Hermitian one-matrix model

$$
\int d H \exp [-\operatorname{Tr} V(H)]
$$

H is $N \times N$ Hermitian matrix.
$V(H)$ is a potential such that the integrals converges at suitable choices of integration contours.

Invariant correlators

Normalization

Generating function of correlators

Basic example: Hermitian one-matrix model

$$
\int d H \exp [-\operatorname{Tr} V(H)]
$$

H is $N \times N$ Hermitian matrix.
$V(H)$ is a potential such that the integrals converges at suitable choices of integration contours.

Invariant correlators

$$
\left\langle\prod_{i} \operatorname{Tr} H^{k_{i}}\right\rangle=\int d H \exp [-\operatorname{Tr} V(H)] \prod_{i} \operatorname{Tr} H^{k_{i}}
$$

Normalization: $\langle 1\rangle=1$.
Generating function of correlators

Basic example: Hermitian one-matrix model

$$
\int d H \exp [-\operatorname{Tr} V(H)]
$$

H is $N \times N$ Hermitian matrix.
$V(H)$ is a potential such that the integrals converges at suitable choices of integration contours.

Invariant correlators

$$
\left\langle\prod_{i} \operatorname{Tr} H^{k_{i}}\right\rangle=\int d H \exp [-\operatorname{Tr} V(H)] \prod_{i} \operatorname{Tr} H^{k_{i}}
$$

Normalization: $\langle 1\rangle=1$.

Generating function of correlators

$$
Z_{N}\left(t_{k}\right)=\left\langle\exp \left[\sum_{k} t_{k} \operatorname{Tr} H^{k}\right]\right\rangle=\int d H \exp \left[-\operatorname{Tr} V(H)+\sum_{k} t_{k} \operatorname{Tr} H^{k}\right]
$$

It is understood as a power series in parameters (sources) in t_{k}.

Integrability

Key property: determinant representation:

$$
Z_{N}\left(t_{k}\right)=\operatorname{det}_{1 \leq i, j \leq N} C_{i+j-2}
$$

Moment matrix

$$
C_{n}=\int d h h^{n} \exp \left[-V(h)+\sum_{k} t_{k} h^{k}\right]
$$

$Z_{N}\left(t_{k}\right)$ is a τ-function of the Toda chain hierarchy. t_{k} are time variables of the hierarchy.
Define

Then

Integrability

Key property: determinant representation:

$$
Z_{N}\left(t_{k}\right)=\operatorname{det}_{1 \leq i, j \leq N} C_{i+j-2}
$$

Moment matrix

$$
C_{n}=\int d h h^{n} \exp \left[-V(h)+\sum_{k} t_{k} h^{k}\right]
$$

$Z_{N}\left(t_{k}\right)$ is a τ-function of the Toda chain hierarchy. t_{k} are time variables of the hierarchy.

Integrability

Key property: determinant representation:

$$
Z_{N}\left(t_{k}\right)=\operatorname{det}_{1 \leq i, j \leq N} C_{i+j-2}
$$

Moment matrix

$$
C_{n}=\int d h h^{n} \exp \left[-V(h)+\sum_{k} t_{k} h^{k}\right]
$$

$Z_{N}\left(t_{k}\right)$ is a τ-function of the Toda chain hierarchy. t_{k} are time variables of the hierarchy.
Define

$$
e^{\varphi_{N}}=\frac{Z_{N+1}\left(t_{k}\right)}{Z_{N}\left(t_{k}\right)}
$$

Then

$$
\frac{\partial^{2} \varphi_{N}}{\partial t_{1}^{2}}=e^{\varphi_{N+1}-\varphi_{N}}-e^{\varphi_{N}-\varphi_{N-1}}
$$

Ward identities = Virasoro constraints

1) Make a redefinition of parameters t_{k} 's (for a polynomial $V(H)$):

$$
-\operatorname{Tr} V(H)+\sum_{k} t_{k} \operatorname{Tr} H^{k} \longrightarrow \sum_{k} t_{k} \operatorname{Tr} H^{k}
$$

2) Note that integral of full derivative is zero

It is written in the form

Ward identities = Virasoro constraints

1) Make a redefinition of parameters t_{k} 's (for a polynomial $V(H)$):

$$
-\operatorname{Tr} V(H)+\sum_{k} t_{k} \operatorname{Tr} H^{k} \longrightarrow \sum_{k} t_{k} \operatorname{Tr} H^{k}
$$

2) Note that integral of full derivative is zero:

$$
\int d H \operatorname{Tr} \frac{\partial}{\partial H}\left(H^{n+1} \exp \left[\sum_{k} t_{k} \operatorname{Tr} H^{k}\right]\right)=0
$$

It is written in the form

Ward identities=Virasoro constraints

1) Make a redefinition of parameters t_{k} 's (for a polynomial $V(H)$):

$$
-\operatorname{Tr} V(H)+\sum_{k} t_{k} \operatorname{Tr} H^{k} \longrightarrow \sum_{k} t_{k} \operatorname{Tr} H^{k}
$$

2) Note that integral of full derivative is zero:

$$
\int d H \operatorname{Tr} \frac{\partial}{\partial H}\left(H^{n+1} \exp \left[\sum_{k} t_{k} \operatorname{Tr} H^{k}\right]\right)=0
$$

It is written in the form

$$
\begin{array}{r}
\underbrace{\left(\sum_{k} k t_{k} \frac{\partial}{\partial t_{k+n}}+\sum^{a+b=n} \frac{\partial^{2}}{\partial t_{a} \partial t_{b}}\right)}_{L_{n}} \int d H \exp \left[\sum_{k} t_{k} \operatorname{Tr} H^{k}\right]=0 \\
{\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}}
\end{array}
$$

Solutions of matrix models

- Matrix model integrable hierarchies have many solutions.
- The Ward identities for non-Gaussian $V(H)$ have many solutions.

Example of $V(H)=H^{3}$ (Dijkgraaf-Vafa solution) gives rise to the Airy type integrals

```
There are two choices of integration contours C1 and C
The partition function is labeled by N}\mp@subsup{N}{1}{}\mathrm{ and
New results in matrix models are associated with concrete choices of V (H) and integration
contours. They provide a procedure of solving with these data fixed.
```


Solutions of matrix models

- Matrix model integrable hierarchies have many solutions.
- The Ward identities for non-Gaussian $V(H)$ have many solutions.

Example of $V(H)=H^{3}$ (Dijkgraaf-Vafa solution) gives rise to the Airy type integrals

$$
\int d h e^{h^{3}+\ldots}
$$

There are two choices of integration contours C_{1} and C_{2}. The partition function is labeled by N_{1} and $N_{2}\left(N_{1}+N_{2}=N\right)$.

Solutions of matrix models

- Matrix model integrable hierarchies have many solutions.
- The Ward identities for non-Gaussian $V(H)$ have many solutions.

Example of $V(H)=H^{3}$ (Dijkgraaf-Vafa solution) gives rise to the Airy type integrals

$$
\int d h e^{h^{3}+\ldots}
$$

There are two choices of integration contours C_{1} and C_{2}. The partition function is labeled by N_{1} and $N_{2}\left(N_{1}+N_{2}=N\right)$.

New results in matrix models are associated with concrete choices of $V(H)$ and integration contours. They provide a procedure of solving with these data fixed.

Superintegrability

In classical mechanics:

- Integrability: there are N integrals of motion in involution
\Downarrow Liouville theorem
The equations of motion are solved in quadratures
- Superintegrability: there are more than N integrals of motion. Usually, it gives rise to explicit solutions.

An example: in the Coulomb system, there is an additional integral, the well-known Laplace-Runge-Lenz vector (the potential is $V=-\frac{g}{r}, L$ is the angular momentum vector),

[^0]For many/all (?) potentials, there is a basis that admits explicit expressions for arbitrary correlators

Superintegrability

In classical mechanics:

- Integrability: there are N integrals of motion in involution

$$
\Downarrow \text { Liouville theorem }
$$

The equations of motion are solved in quadratures

- Superintegrability: there are more than N integrals of motion. Usually, it gives rise to explicit solutions.
An example: in the Coulomb system, there is an additional integral, the well-known Laplace-Runge-Lenz vector (the potential is $V=-\frac{g}{r}, \vec{L}$ is the angular momentum vector),

$$
\vec{p} \times \vec{L}-g m \vec{r}
$$

Superintegrability in matrix models:
For many/all (?) potentials, there is a basis that admits explicit expressions for arbitrary correlators. There is a hidden symmetry similarly to the Coulomb system case.

Gaussian Hermitian one-matrix model: $V(H)=-\frac{1}{2} H^{2}$

The basis is given by Schur functions.
The Schur functions S_{R} are symmetric polynomials of eigenvalues of the matrix H, or graded polynomials of $\operatorname{Tr} H^{k}$. They form a complete basis in the space of graded invariant polynomials. They are labeled by partitions, or Young diagrams $R: R_{1} \geq R_{2} \geq \ldots \geq R_{l}>0$. Examples:

$$
\begin{gathered}
S_{\emptyset}=1 \\
S_{[1]}=\operatorname{Tr} H \\
S_{[2]}=\frac{(\operatorname{Tr} H)^{2}}{2}+\frac{\operatorname{Tr} H^{2}}{2} \\
S_{[1,1]}=\frac{(\operatorname{Tr} H)^{2}}{2}-\frac{\operatorname{Tr} H^{2}}{2}
\end{gathered}
$$

General formula:

$$
\begin{aligned}
& \exp \left[\sum_{k} \frac{p_{k}}{k} z^{k}\right]=\sum_{i} h_{i}\left(p_{k}\right) z^{i} \\
& S_{R}\left(p_{k}\right)=\operatorname{det}_{i, j} h_{R_{i}-i+j}\left(p_{k}\right) p_{k} \longrightarrow \operatorname{Tr} H^{k}
\end{aligned}
$$

Superintegrability in the Gaussian model

Formula for the general correlator:

$$
\left\langle S_{R}\left(\operatorname{Tr} H^{k}\right)\right\rangle=\frac{S_{R}\left(p_{k}=N\right) S_{R}\left(p_{k}=\delta_{k, 2}\right)}{S_{R}\left(p_{k}=\delta_{k, 1}\right)}
$$

The point is that the Schur function S_{R} is the character of the linear group $G L(N)$ in the representation labeled by the Young diagram R. Hence, averages of characters are proportional to characters at peculiar points.

The partition functions is

$$
Z_{N}\left(t_{k}\right)=\sum_{R} \frac{S_{R}\left(p_{k}=N\right) S_{R}\left(p_{k}=\delta_{k, 2}\right)}{S_{R}\left(p_{k}=\delta_{k, 1}\right)} S_{R}\left(p_{k}=k t_{k}\right)
$$

due to the Cauchy identity:

$$
\exp \left[\sum_{k} t_{k} \operatorname{Tr} H^{k}\right]=\sum_{R} S_{R}\left(\operatorname{Tr} H^{k}\right) S_{R}\left(p_{k}=k t_{k}\right)
$$

More examples of superintegrability

Various other examples of superintegrable models. Choosing non-Gaussian potentials:

- Hermitian matrix model with monomial $V(H)$. The basis is still given by the Schur polynomials

$$
\left\langle S_{R}\right\rangle_{a}=\int_{C_{a}} S_{R}\left(\operatorname{Tr} H^{k}\right) \cdot e^{-\frac{1}{s} \operatorname{tr} H^{s}} d H=S_{R}\left(p_{k}=\delta_{k, s}\right) \cdot \prod_{(\alpha, \beta) \in R}[[N+\alpha-\beta]]_{s, 0} \cdot[[N+\alpha-\beta]]_{s, a}
$$

$$
\text { for } N=0 \text { or }=a \bmod s, \text { and }[[n]]_{s, a}=n \text { if } n=a \bmod s \text { and }=1 \text { otherwise. }
$$

- Logarithmic potentials:

$$
\left\langle S_{R}\left(\operatorname{Tr} H^{k}\right)\right\rangle=\int S_{R}\left(\operatorname{Tr} H^{k}\right) \exp [u \operatorname{Tr} \log H+v \operatorname{Tr} \log (1-H)] d H=\frac{S_{R}\left(p_{k}=N\right) \cdot S_{R}\left(p_{k}=u+N\right)}{S_{R}\left(p_{k}=u+v+2 N\right)}
$$

- Potential that is a square of logarithm:

$$
\left\langle S_{R}\right\rangle:=\int S_{R}\left(\operatorname{Tr} H^{k}\right) \exp \left[-\frac{\operatorname{Tr}(\log H)^{2}}{2 g^{2}}\right] d H=A^{|R|} q^{2 \varkappa_{R}} \cdot S_{R}\left(p_{k}=\frac{A^{k}-A^{-k}}{q^{k}-q^{-k}}\right)
$$

where $\varkappa_{R}=\sum_{(\mu, \nu) \in R}(\mu-\nu), q=\exp \left(\frac{g^{2}}{2}\right)$ and $A=q^{N}$.

Examples of models with the same superintegrability properties:

- Models depending on the external matrix. One example is

$$
\int S_{R}\left(\operatorname{Tr} H^{k}\right) \exp \left[-\frac{1}{2} \operatorname{Tr} A H A H\right] d H=\frac{S_{R}\left(p_{k}=\operatorname{Tr} A^{-k}\right) \cdot S_{R}\left(p_{k}=\delta_{k, 2}\right)}{S_{R}\left(p_{k}=\delta_{k, 1}\right.}
$$

Here the basis is still given by the Schur functions.
Another example is the generalized Kontsevich models. The basis in the second case is given by the Hall-Littlewood polynomials at special values of the parameter.

- Complex matrix model instead of the Hermitian one. The basis is still given by the Schur polynomials:

$$
\int S_{R}\left(\operatorname{Tr}\left(Z Z^{\dagger}\right)^{k}\right) \exp \left[-\operatorname{Tr} A Z B Z^{\dagger}\right] d^{2} Z=\frac{S_{R}\left(p_{k}=\operatorname{Tr} A^{-k}\right) \cdot S_{R}\left(p_{k}=\operatorname{Tr} B^{-k}\right)}{S_{R}\left(p_{k}=\delta_{k, 1}\right.}
$$

- Models of orthogonal and real matrices, and, generally, the β-ensemble instead of matrix model. The basis is given by the Jack polynomials. There is also further deformation to the (q, t)-matrix models and the Macdonald polynomials.
- Tensor models instead of matrix models. The basis is given by the generalized characters.

W-representation

The second newly discovered property of the matrix models is their W-representation. In the Gaussian Hermitian matrix model case, it is

$$
\int d H \exp \left[-\frac{1}{2} \operatorname{Tr} H^{2}+\sum_{k} t_{k} \operatorname{Tr} H^{k}\right]=e^{\frac{1}{2} \hat{W}_{2}} \cdot 1
$$

with

$$
\hat{W}_{2}=\sum_{k} k l t_{k} t_{l} \frac{\partial}{\partial t_{k+l-2}}+\sum_{k, l}(k+l+2) t_{k+l+2} \frac{\partial^{2}}{\partial t_{k} \partial t_{l}}+2 N \sum_{k}(k+2) t_{k+2} \frac{\partial}{\partial t_{k}}+2 N^{2} t_{2}+N t_{1}^{2}
$$

One can see that

$$
e^{\frac{1}{2} \hat{W}_{2}} \cdot 1=\sum_{R} \frac{S_{R}\left(p_{k}=N\right) S_{R}\left(p_{k}=\delta_{k, 2}\right)}{S_{R}\left(p_{k}=\delta_{k, 1}\right)} S_{R}\left(p_{k}=k t_{k}\right)
$$

In the variables $q_{i}: t_{k}=\frac{1}{k} \sum_{i}^{N} q_{i}$, one obtains the rational Calogero Hamiltonian at the free fermion point:

$$
\hat{W}_{2}=\sum_{i} \frac{\partial^{2}}{\partial q_{i}^{2}}+2 \sum_{i \neq j} \frac{1}{q_{i}-q_{j}} \frac{\partial}{\partial q_{i}}
$$

Infinite commutative family of W-operators

There is an infinite commutative family of \hat{W}_{p} :

$$
\left[\hat{W}_{p}, \hat{W}_{p^{\prime}}\right]=0
$$

These operators are elements of the $W_{1+\infty}$ algebra.

They induce a two-matrix model generalization:
where X is Hermitian matrix and Y is anti-Hermitian
The superintegrability gives rise to the expansion

Infinite commutative family of W-operators

There is an infinite commutative family of \hat{W}_{p} :

$$
\left[\hat{W}_{p}, \hat{W}_{p^{\prime}}\right]=0
$$

These operators are elements of the $W_{1+\infty}$ algebra.
They induce a two-matrix model generalization:

$$
Z_{N}\left(t_{k}, \bar{t}_{k}\right)=e^{\sum_{k} \bar{t}_{k} \hat{W}_{k}} \cdot 1=\int d X d Y \exp \left[\operatorname{Tr} X Y+\sum_{k}\left(t_{k} \operatorname{Tr} X^{k}+\bar{t}_{k} \operatorname{Tr} Y^{k}\right)\right]
$$

where X is Hermitian matrix and Y is anti-Hermitian.
The superintegrability gives rise to the expansion

$$
Z_{N}\left(t_{k}, \bar{t}_{k}\right)=\sum_{R} \frac{S_{R}\left(p_{k}=N\right) S_{R}\left(p_{k}=k \bar{t}_{k}\right) S_{R}\left(p_{k}=k t_{k}\right)}{S_{R}\left(p_{k}=\delta_{k, 1}\right)}
$$

Infinite commutative family of W-operators

There is an infinite commutative family of \hat{W}_{p} :

$$
\left[\hat{W}_{p}, \hat{W}_{p^{\prime}}\right]=0
$$

These operators are elements of the $W_{1+\infty}$ algebra.
They induce a two-matrix model generalization:

$$
Z_{N}\left(t_{k}, \bar{t}_{k}\right)=e^{\sum_{k} \bar{t}_{k} \hat{W}_{k}} \cdot 1=\int d X d Y \exp \left[\operatorname{Tr} X Y+\sum_{k}\left(t_{k} \operatorname{Tr} X^{k}+\bar{t}_{k} \operatorname{Tr} Y^{k}\right)\right]
$$

where X is Hermitian matrix and Y is anti-Hermitian.
The superintegrability gives rise to the expansion

$$
Z_{N}\left(t_{k}, \bar{t}_{k}\right)=\sum_{R} \frac{S_{R}\left(p_{k}=N\right) S_{R}\left(p_{k}=k \bar{t}_{k}\right) S_{R}\left(p_{k}=k t_{k}\right)}{S_{R}\left(p_{k}=\delta_{k, 1}\right)}
$$

The reduction to the Gaussian case is immediate: $\bar{t}_{k}=\frac{1}{2} \delta_{k, 2}$.

Rational Calogero many-body system

Rational Calogero many-body system is superintegrable, and its Hamiltonians are just \hat{W}_{k} ! How to introduce an arbitrary Calogero coupling? \qquad
where x_{i} are the eigenvalues of the matrix $H, \Delta(x)=\prod_{i<j}\left(x_{i}-x_{j}\right)$ is the Vandermonde determinant.

The Gaussian β-ensemble with $V(x)=\frac{1}{2} x^{2}$ has the W-representation and, once again in variables q_{i}, one obtains the rational Calogero Hamiltonian at arbitrary coupling

Rational Calogero many-body system

Rational Calogero many-body system is superintegrable, and its Hamiltonians are just \hat{W}_{k} ! How to introduce an arbitrary Calogero coupling? Integration over angular variables:

$$
\int d H \exp \left[-\operatorname{Tr} V(H)+\sum_{k} t_{k} \operatorname{Tr} H^{k}\right] \sim \int \Delta(x)^{2} \prod_{i}^{N} \exp \left[-V\left(x_{i}\right)+\sum_{k} t_{k} x_{i}^{k}\right] d x_{i}
$$

where x_{i} are the eigenvalues of the matrix $H, \Delta(x)=\prod_{i<j}\left(x_{i}-x_{j}\right)$ is the Vandermonde determinant.

The Gaussian β-ensemble with $V(x)=\frac{1}{2} x^{2}$ has the W-representation and, once again in variables q_{i}, one obtains the rational Calogero Hamiltonian at arbitrary coupling

Rational Calogero many-body system

Rational Calogero many-body system is superintegrable, and its Hamiltonians are just \hat{W}_{k} ! How to introduce an arbitrary Calogero coupling? Integration over angular variables:

$$
\int d H \exp \left[-\operatorname{Tr} V(H)+\sum_{k} t_{k} \operatorname{Tr} H^{k}\right] \sim \int \Delta(x)^{2} \prod_{i}^{N} \exp \left[-V\left(x_{i}\right)+\sum_{k} t_{k} x_{i}^{k}\right] d x_{i}
$$

where x_{i} are the eigenvalues of the matrix $H, \Delta(x)=\prod_{i<j}\left(x_{i}-x_{j}\right)$ is the Vandermonde determinant. β-ensemble:

$$
Z_{N}^{(\beta)}\left(t_{k}\right)=\int \Delta(x)^{2 \beta} \prod_{i}^{N} \exp \left[-V\left(x_{i}\right)+\sum_{k} t_{k} x_{i}^{k}\right] d x_{i}
$$

The Gaussian β-ensemble with $V(x)=\frac{1}{2} x^{2}$ has the W-representation

$$
Z_{N}^{(\beta)}\left(t_{k}\right)=e^{\frac{1}{2} \hat{W}_{2}^{(\beta)}} \cdot 1
$$

and, once again in variables q_{i}, one obtains the rational Calogero Hamiltonian at arbitrary coupling

$$
\Delta(q)^{\beta} \hat{W}_{2}^{(\beta)} \Delta(q)^{-\beta}=\sum_{i} \frac{\partial^{2}}{\partial q_{i}^{2}}-2 \beta(\beta-1) \sum_{i \neq j} \frac{1}{\left(q_{i}-q_{j}\right)^{2}}
$$

Thank you for your attention!

[^0]: Superintegrability in matrix models

