# Testing universal dark-matter caustic rings with galactic rotation curves 

Daniil Davydov ${ }^{\text {a,b }}$, Sergey Troitsky ${ }^{\text {b,a }}$<br>${ }^{\text {a }}$ Physics Department, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991, Moscow, Russia<br>${ }^{\mathrm{b}}$ Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7A, 117312, Moscow, Russia

## Introduction

- Caustics are concentric structures of enhanced dark-matter density;
- These overdensities should reveal themselves as features in the rotation curves of galaxies.


Fig. 1 M33 rotation curve

## Introduction

- Positions of the caustics are governed by the distribution of angular momenta of infalling dark-matter particles;
- The authors proposed [1] that this distribution is universal and therefore positions of the caustic rings in different galaxies should coincide up to a welldetermined rescaling.


Fig. 2 Binned data for 32 galaxy sample according to [1]

## Motivation and purpose

- To our best knowledge, these results have never been tested with newer data;
- A statistical analysis of possible universal caustic rings was performed only in Ref. [1];
- The purpose of the present work is to test the same hypothesis of universal caustic rings [1] with a large independent set of rotation curves published since then;


## Data on rotation curves

- We use the Spitzer Photometry and Accurate Rotation Curves (SPARC) database of rotation curves for 175 galaxies [2].
- The previous study [1] used a sample of 32 rotation curves taken from [3, 4]. Of these 32 galaxies, 29 are present in the SPARC database.
-The main, independent from Ref. [1], sample we use contains 121 rotation curves.
[2] - F. Lelli, S. S. McGaugh, J. M. Schombert, Sparc: Mass models for 175 disk galaxies with spitzer photometry and accurate rotation curves, The Astronomical Journal 152 (6) (2016) 157.
[3] K. G. Begeman, A. H. Broeils, R. H. Sanders, Extended rotation curves of spiral galaxies : dark haloes and modified dynamics., Mon. Not. Roy. Astron. Soc. 249 (1991) 523.
[4] - R. H. Sanders, The published extended rotation curves of spiral galaxies: Confrontation with modified dynamics, The Astrophysical Journal 473 (1) (1996) 117-129


## Data analysis

## Individual rotation curves

- Each rotation curve is a set of measurements $\left(r_{i}, v_{i} \pm \Delta v_{i}\right)$;
- The hypothesis of Ref. [1] predicts caustic rings at

$$
\begin{equation*}
\tilde{r}=a_{n} \frac{j_{\max }}{0.25} \frac{0.7}{h} \tag{1}
\end{equation*}
$$

where the rescaled radius is defined as

$$
\begin{equation*}
\tilde{r} \equiv r\left(\frac{220 \mathrm{~km} / \mathrm{s}}{v_{\mathrm{rot}}}\right) \tag{2}
\end{equation*}
$$

- The universal rescaled positions of these caustics are:

$$
a_{n}=\{39,19.5,13,10,8, \ldots\} \mathrm{kpc}
$$

## Data analysis

## Individual rotation curves

1.)The data points are fitted by a smooth curve (a line or a polynomial was used in [1]).
2.) approximately flat part of the rotation curve $\Leftrightarrow \tilde{r}_{i} \gtrsim 10 \mathrm{kpc}$
3.) We determine the fitting parabola:

$$
\bar{v}(\tilde{r})=c_{0}+c_{1} \tilde{r}+c_{2} \tilde{r}^{2}
$$

4.) Then the average value

$$
v_{\mathrm{rot}}=\langle v(\tilde{r})\rangle_{\tilde{r} \geq 10 \mathrm{kpc}}
$$

used in eq. (2)
The rescaled rotation curve is determined iteratively. As a result, we obtain a set of rescaled data points $\left(\tilde{r}_{i}, v_{i} \pm \Delta v_{i}\right)$ and the corresponding fitting parabola $\bar{v}(\tilde{r})$.

## Data analysis

## Next step

1.) The output of this step for each galaxy is a set of $\left(\tilde{r}_{i}, \sigma_{i}\right)$, where we defined:

$$
\sigma_{i} \equiv\left(v_{i}-\bar{v}\left(\tilde{r}_{i}\right)\right) / \Delta v_{i}
$$

2.) We require at least four data points to search for bumps against the background of parabola $\bar{v}(\tilde{r})$.
3.) This quality cut removes $\mathbf{2 5}$ galaxies from the main data set (and none from the set of 32 galaxies used in $[3,4]$ ).

## Data analysis

## Ensemble of rotation curves

## Next step

- For each $\sigma_{i}$ we assign a $p_{i}$ value $\left(0 \leqslant p_{i} \leqslant 1\right)$ with the meaning of the probability of a random deviation to $\geq \sigma_{i}$ for the Gaussian distribution with the mean 0 and variance 1 :

$$
p_{i}=1-\operatorname{CDF}\left(\sigma_{i}\right)=\frac{1}{2}\left(1-\operatorname{erf}\left(\frac{\sigma_{i}}{\sqrt{2}}\right)\right)
$$

$\downarrow$
a function $p_{j}(\tilde{r})$ by the linear interpolation of the corresponding points $\left(\tilde{r}_{i}, p_{i}\right)$ for this galaxy.

## Data analysis

## Ensemble of rotation curves

3.) We are now ready to construct the averaged likelihood function as:

$$
L(\tilde{r})=-\sum_{j=1}^{N(\tilde{r})} \frac{\log \left[p_{j}(\tilde{r})\right]}{N(\tilde{r})}
$$

where $N(\tilde{r})$ is the number of galaxies, for which $p_{j}$ is determined at the point $\tilde{r}$.

## Data analysis

## Monte-Carlo estimate of significance

To simulate artificial rotation curves without universal features, we assume that:

》 the fitted functions $\bar{v}(\tilde{r})$ represent the true smooth rotation curves;
\the measurements were done at the same sets of $r_{i}$ as in the real data;

》 the measurement errors are Gaussian with the same widths as quoted for the real data.

Within these assumptions, we obtain a simulated data set and process it in the same way as the real data.

## Data analysis

## Monte-Carlo estimate of significance

- We use the maximal value $L_{\max }$ of $L(\tilde{r})$ over the interval of interest, $10 \mathrm{kpc} \leq \tilde{r} \leq 75 \mathrm{kpc}$, which covers well the first two caustic rings discussed in Ref. [1].
- We repeat $M$ times the same procedure with simulated rotation-curve measurements and obtain a set of simulated $L_{\text {max }}^{(k)}, k=1, \ldots, M$.
- The significance of the strongest universal feature in the set of rescaled rotation curves is determined by the $p$-value.


## Results and discussion

Results for the main sample (contains 121 rotation curves)

The vertical dashed lines indicate the expected positions of the $\mathrm{n}=1,2$ caustic rings claimed in Ref. [1].

No significant peaks of $L(\tilde{r})$ are observed.


Fig. 3 The function $L(\tilde{r})$ for the main sample of 121 galaxies which does not include those studied in Ref. [1].

## Results and discussion

Results for the main sample (contains 121 rotation curves)

The observed $L_{\text {max }} \approx 1.83$ or larger was found 202 times out of 1000 , resulting in the $p$-value of 0.2 for the null hypothesis of the absence of universal caustic rings.


Fig. 4 The distribution of the maxima of 1000 Monte-Carlo simulated $L(\tilde{r})$ functions for the main sample of rotation curves.

## Results and discussion

Results for the previously used sample
(contains 32 rotation curves) The $p$-value of 0.98 for the null hypothesis.



Fig. 5 Results for the sample of 32 rotation curves studied in Ref. [1].

## Results and discussion

## Discussion: comparison with the previous result

- There are two main differences between the statistical analysis used in Ref. [1] and that of the present work:
\We use the unbinned likelihood while the analysis of Ref. [1] was based on binning.

》we use Monte-Carlo simulations based on the null hypothesis to estimate the significance, while Ref. [1] assigned statistical errors to the binned data by hand.

## Results and discussion

Discussion: comparison with the previous result


Fig. 6 Comparison of the new results with those of Ref. [1] by the binned method of Ref. [1]. Grey points with dashed error bars: the rotation curves used in Ref. [1]; black points with full error bars: new rotation curves from the SPARC database. Left panel: 29 galaxies present in both samples. Right panel: 32 galaxies in the old sample and 121 other galaxies in the new sample.

## Conclusions

- The hypothesis of the universality of caustic rings in galaxies, proposed in Ref. [1], was tested.
- We find no indication of the presence of universal caustic rings: the data agrees with the expectations of the null hypothesis with the p -value of 0.20 .
-We demonstrate in addition that the new data do not support the conclusions of Ref. [1] even if their method is used.
- However, the stacking method, used in Ref. [1] and in the present work, tests only the universality of the caustics.


## Thank you for your attention!

This work is supported by the Russian Science Foundation, grant 22-12-00215 (DD).

## Запасные слайды

## Статистический анализ

- Входные данные: ( $\tilde{r}_{i}, \delta \mathrm{v}_{\mathrm{i}} \pm \Delta \mathrm{v}_{\mathrm{i}}$ ). Дальше строим точки : $\left(\tilde{r}_{i}, \sigma_{\mathrm{i}}\right)$, где
$\sigma_{i}=\frac{\delta v_{i}}{\Delta v_{i}}$
Каждому $\sigma_{i}$ ставится в соответствие $p_{i}$, имеющая смысл
вероятности случайного отклонения от нуля на величину $\delta \mathrm{v}_{\mathrm{i}}$ (и
более) для нормального распределения:

$$
\mathrm{p}_{\mathrm{i}}=\frac{1}{2 \pi} \int_{\sigma_{\mathrm{i}}}^{\infty} \exp \left[-\frac{\sigma_{\mathrm{i}}^{2}}{2}\right] d \sigma\left(\text { получили набор }\left(\tilde{r}_{i}, \mathrm{p}_{\mathrm{i}}\right)\right)
$$

Дальше составляем $\mathrm{L}(\tilde{r})=-\sum_{i=1}^{N(\tilde{r})} \frac{\ln [p i(\tilde{r})]}{N(\tilde{r})}$

