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I. Euclidean solutions: Instantons in gauge theory
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I. Euclidean solutions: Instantons in double well
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Figure 1: Tunneling in symmetric double well potential.
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I. Fuclidean solutions:

Bounce in asymmetric double well
Coleman 1977
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|. Euclidean solutions: Oscillating bounces

Coleman, De Luccia 1980,
Hackworth, Weinberg, 2004
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Figure 3: CDL bounce and oscillating bounce solution with N=7 nodes of ¢, (¢ = n,a = p) .




. Fluctuations of Topology
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Il. Transitions with change of topology & particle
creation

G.L., Rubakov, Tinyakov (1987)




Il. Muon number “non-conservation” process
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Il. Giddings-Strominger axion Wormholes
Giddings-Strominger 1988




Ill. Interpretation of Wormbholes
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Figure 1: Common interpretations of Euclidean wormholes. On the left, a full wormhole connecting two

asymptotic regions. On the right, a semi-wormhole, leading to the creation of a baby universe (¥3).




[II: Baby universe interpretation

G.L., Rubakov, Tinyakov 1988

Euclidean wormholes can be interpreted as tunnelling events leading to the creation of baby
universes (3, 8. It was noted in [23] that GS wormholes are leading to the materialisation of baby
universes which are contracting after analytic continuation to Minkowski time. Indeed, a regular
wormhole at 7 = 0 has finite size a(0) = ap # 0, and zero derivative a(0) = 0 such that for small
T we can expand

a(r) = ao + gaxr + O(Y) (14)

where the coefficient as = @(0). After analytic continuation to Minkowski time ¢ = —iT we get

a(t) = ag — %agtg +0O(th . (15)

Now it is clear that as > 0 and a2 < 0 correspond respectively to contracting and expanding
small universes. The GS wormhole obviously has az = @(0) > 0, since the neck of the wormhole

is a minimum of a(7). Instead, a wormhole leading to an expanding baby universe should have
ag = a(0) < 0, i.e. the “neck” of such a wormhole should be a local maximum.




Ill: Baby universe interpretation

(a) Giddings-Strominger-type (b) Wormbhole leading to an

wormbhole. expanding baby universe.




IV. Linear stability analysis:

Rubakov & Shvedov 1996, Found single negative mode about
GS wormhole in O(4) symmetric (homogeneous) sector

Alonso & Urbano, 2017-2019, Showed that there are no
negative modes in homogeneous sector!

Hertog, Truijen & VanRiet, 2019, Clamed that Euclidean Axion
Wormholes have multiple non-homogeneous Negative Modes

Loges, Shiu & Sudhir, 2022, Using gauge invariant approach
showed showed that Euclidean Axion Wormholes do not have
any Negative Modes.




2.5etup

Our starting point is the Euclidean action for gravity coupled to an axion and a dilaton/scalar
¢, which reads [20]:

Sk = f d'z\/g (——R + 5 VudV o+ V(9) + 1213,2 -ﬁ@"ﬁﬂwpﬂw) , (1)

where k = Mp,> = 87G, the dilatonic coupling constant is denoted 3 and the potential V' (¢), H, .

being the 3-form field strength of an axion field with coupling f. When 3 # 0, we refer to ¢ as a
dilaton, while for 3 = 0 we simply call it a scalar.

We will focus on the following spherically symmetric and homogeneous ansatz

(ds? = h%(T)dr? + a(7)%d03
10 = ‘f)(T) J (3)

(Hoij =0, Hiji = qeijic




On-shell action

Using the trace of the first equation in (2), the on-shell action of the wormhole solution can be

easily calculated
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where in the second line we used the spherically symmetric ansatz. Note that this expression for
the on-shell action is equivalent to the action (4) upon using the constraint (6) and keeping the

surface term. From this expression of the action (9) we can conclude that for some potentials

the wormhole action can become negativel.




Equations of motion
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In the gauge h = 1, these equations simplify to
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Initial conditions

At the wormhole neck we have a(0) = 0 and ¢(0) = 0
and in the asymptotic future 7 = 7y — oo, a(7y) = 1 and r,f'J(Tf] = (.

On the classical solution, we must also specify the initial values of the scale factor and scalar
field. The value of the scalar field ¢(0) = ¢y is a free parameter, while the throat size, a(0) = ao,
is determined by the Friedmann constraint at 7 = 0:

K 2 Q”
1=3 (ﬂnv(%) + E) , (17)
2
ﬁ%V(d)ﬂ)m‘?'—mg—l—%:O, z=a}, (18)
where we defined
Q? = N2a—BoovE (19)
2
The discriminant of the cubic equation (18) is A = — (4 - EEQEV(&)[.)?). When A > 0, there

are three real solutions for x, while when A < 0, there are one real and two complex Solutinnsg



GS solution

The GS wormhole solution [3] has V' =0 and in the gauge a = 7 can be written as [17]

1\ ~1/2 Nz 2
a(t)=1, h(1)= ( — E) , efnvE 8 al cos? lﬁ arccos (&)] , (10)
where 3. denotes the critical value of the dilaton coupling above which no solution exists, with

1 _KN? o (mf 2v2
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The action of this wormhole can be easily calculated and reads

0o 2,—BovE 2
s@ = [ ar 2NV VTN ("”’B). (12)

ao ~r31f'1—$§_ BVr T \2B.

In the limit 8 — 0, one gets a version of the GS solution without dilaton, whose action is

S(ﬂ) B \/E?TE‘N

(13)
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3. Axion-dilaton wormholes

After these preliminaries, we are ready to search for wormhole solutions. We will start with the
case of the axion-dilaton-gravity system, where we assume the dilaton to be massive, that is to say

we choose the potential
m*¢” (26)

where m is the dilaton mass. The equations of motion (7) in the gauge h = 1 now read

4

2 1 N2
2ai + a® — 1+ ka (q; +3 2 :4 e P9V = () (acceleration equation),

2 [ 12 2
fa2-1=L24 (— — 1’mz 2) — %e'ﬂ‘ﬁﬁ (Friedmann constraint) , (27)
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“Effective potential”

The dilaton equation in (27) possesses a mechanical analogy as the motion of a particle ¢(7) in an

effective potential W(¢):

N2

W(¢) = —V(¢)—Fﬂ_ﬁ¢ﬁ= 28)
2

diflff) _ e+ %e—mﬁ_ (29)

We see that the fate of the particle released at some point ¢(0) = ¢y > 0 with zero velocity
#(0) = 0 depends on the sign of W4 at this point. Depending on which term in the potential
W(¢) dominates at this point, the particle either starts to move to the right (increasing ¢) or to
the left (decreasing ¢). Since we want to obtain an asymptotically flat geometry, for 7 — oo the
dilaton field should eventually settle at its vacuum value ¢ = 0. The shape of the effective potential

rucially depends on the axion charge N, and also on which root is chosen in (22) — see Fig. 3 for an

illustration.




“Effective potential”
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(a) Monotonic effective potential. (b) Non-monotonic effective potential.

Figure 3: Effective potential W (¢) as a function of ¢y for axion charge N = 20000 (left) and N = 30000
(right). The other parameters are the same for both plots: m = 0.01 and 3 = 1.2. The green line
corresponds to the large root in (22), while the red line corresponds to the smaller positive root. The plot

on the right contains a gap, which is caused by there existing no real solutions to the cubic equation (18)

in that range.




Generalisations of GS wormholes
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Figure 4: Wormhole solutions with a massive dilaton, with the scale factor shown on the left and the
dilaton evolution on the right. All solutions have k =1, 3 = 1.2, N = 30000, m = 0.01. The individual
solutions are characterised by the initial value of the dilaton, given respectively by the values

¢p = 0.7118165858, 5.5075291704, 8.1964321797, 8.3116654157 (we indicate a number of significant digits
such that the action can be determined to better than percent level accuracy). Solutions with larger ¢

display a more intricate field evolution, containing oscillations of the fields.




Generalisations of GS wormholes
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Figure 5: The Euclidean action, as a function of 7 (left plot) and a graph with the asymptotic values (right
plot), for the solutions shown in Fig. 4. Intriguingly, the action is not monotonic in ¢, but starts

decreasing as more oscillations are added.




Generalisations of GS wormholes

Values of §:
- 1.64

— 1.58
— 1.579
—— 1.4142

.|....l....|....|....|...mZN

Figure 8: Branch structure of the generalised GS-type solutions with at most one extra minimum of the

scale factor, for four representative values of the dilaton coupling. A full description is provided in the
main text.




Axion-Dilaton wormholes leading to
expanding baby universes
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Figure 11: An example of a wormhole leading to an expanding universe npon analytic continnation. For
this solution, the dilaton rolls down the potential monotonically. Shown are the scale factor (left), dilaton
(middle) and Euclidean action (right). The red line represents the value of the final Euclidean action when
taking the analytic remainder into account (see Appendix C). The parameter values are m = 0.01, § = 1.2,
N = 30000 and the initial dilaton value is ¢y = 4.6297956230.




Axion-Dilaton wormholes leading to
expanding baby universes
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Figure 19: An example of a wormhole with large dilaton coupling, in this case J = 2. Shown are again the

scale factor (left), dilaton (middle) and Euclidean action (right). The parameter values are m = 0.01,
# =2, N =73940 and the initial dilaton value is ¢y = 2.0522333714.




Axion-Dilaton wormholes leading to
expanding baby universes
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Figure 12: Expanding wormhole solutions with a massive dilaton, with the scale factor shown on the left
and the dilaton evolution on the right. All solutions have kK = 1, § = 1.2, N = 30000, m = 0.01. The
individual solutions are characterised by the initial value of the dilaton, given respectively by the values
b0 = 4.6297956230, 6.2498081147. 6.5411315634, 6.9914512133. Solutions with larger ¢, display a more

intricate field evolution, containing oscillations of the fields.




Axion-Dilaton wormholes leading to
expanding baby universes
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Figure 13: The Euclidean action, as a function of 7 (left plot) and a graph with the asymptotic values
(right plot), for the solutions shown in Fig. 12. Surprisingly, the action decreases as the field evolutions

become more involved.




Comparision of GS and expanding wormholes
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Figure 21: This figure compares GS-type and expanding wormholes, at the same parameter values

m?N = 3 and dilaton coupling 3 = 1.2. The GS-type solutions are depicted by the black (¢, ~ 0.7) and
grey (¢p =~ 5.5) lines. These solutions were already presented in Fig. 4. The blue (¢¢ =~ 4.6) and red

(o = 6.2) curves correspond to expanding wormholes, and were shown in Fig. 12. Interestingly, the
actions are seen to be quite close to each other, with the grey solution lying in between the two expanding
wormhole solutions. It appears that overall the black GS-type solution is dominant, but a verification of

this assertion would require an understanding of the infinite oscillation limit of expanding wormholes.




4. Axion-scalar wormholes
leading to expanding baby universes

We will choose the scalar field potential to be of double well form
1
V(g) = 7A(¢" —v%)?,

where A is a dimensionless scalar field self-coupling and v is the vacuum expectation value

The equations of motion (7) then read

12 2
N
2ai + a? — 1 + ka? (2 + V(q.’:)) - m—d =0 (acceleration equation),

2 /12 2
a2-1="4 (t'ﬁ — V(f,f))) _mN (Friedmann constraint) ,




Axion-scalar wormholes
leading to expanding baby universes:
Large charge case
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Figure 23: An example of an expanding wormhole supported by a large axionic charge, and a scalar field in
a double well potential. The parameters used are A = 0.01, N = 100000, v = 0.4. The initial scalar field
value is ¢p = 0.27112946714882599307. The orange lines provide the GS wormhole values as reference.




Axion-scalar wormholes
leading to expanding baby universes:
Small charge case
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Figure 24: An example of an expanding wormhole supported by a small axionic charge. The parameters
used are A = 0.01, N = 1000, v = 0.4. The initial scalar field values is ¢y = 0.26235021388116072967.




Axion-scalar wormholes
leading to expanding baby universes:
Action vs N

$0
0.40f g
0.35F
[ 6
[ 2% 10°F .
ﬂ.aﬂ: __._-_——'"-.——..-. -

' 1x106F s _.e2P
0.25 ;

0.20f

00 15000 20000 25000 30 000 35000

5000 10000 15000 20000 25000 30000 35000° -1x10°f
Figure 28: Summary plots for v = 1.0 (black), v = 0.9 (purple), v = 0.8 (turquoise), v = 0.7 (green),
v = 0.6 (pink) and v = 0.5 (blue). Here A = 0.01. The right plot shows the most striking result, namely

that the action varies linearly with the charge N. For small enough charge, the action becomes negative.
The dashed black line is the Giddings-Strominger value of the action.



Axion-scalar wormholes
leading to expanding baby universes:
Action to charge ratio
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Figure 26: Plots of the action-to-charge ratio for v = 0.4 (left) and v = 0.6 (right) with A = 0.01.




Oscillating
Axion-scalar wormholes
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Figure 27: Comparison of solutions with one, two and three minima for the same theory parameters
N = 25000, A = 0.01 and v = 0.5. The Euclidean action grows with each additional oscillation. The
solutions here are specified by initial scalar field values that lie very close to each other, respectively at

®p = 0.297695980172969317414540, 0.297530409785421517546558, 0.297530409646648251937091 (these

solutions must be optimised to high accuracy in order to determine the action reliably).




Oscillating wormholes

(c) An oscillating wormhole leading

to an expanding baby universe.




5. Urgent Open question:

® Linear stability analysis of various wormhole solutions!




5. Conclusions :

e We found a whole zoo of Euclidean axionic wormholes in two
different theories: axion - massive dilaton and axion - scalar
with a symmetric potential.

® Euclidean wormholes are very interesting & exciting, but the
same time very confusing & obscure objects.

® Definitely more work needs to be done to understand deeply
the role of wormholes in quantum gravity and their relevance
to physical effects.
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V. Interpretation of Wormholes:

Three types of solutions
van Riet (2020)
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No axion-scalar wormholes with
non-trivial scalar field in symmetric potential!

Note also that in the symmetric potential Eq. (32) no GS-type wormholes exist with non-trivial
scalar field. This conclusion can be easily reached by noting that GS-type wormholes have positive
@, and consequently provide friction in the scalar field equation. So, in order for the solution to end

up on one of the hills (vacua) for 7 — oo one should start rolling down from higher hill, in order

to overcome friction, but in a symmetric potential there is no higher hill. We conclude that the

only known GS wormholes in this potential arise with a trivial scalar field configuration ¢ = +wv.




Parameter count:
Massive dilaton: N, m, (3; Scalar field: N, A, v

Under the following rescaling of the fields

62 48 pot (B1)

VE Il 17

and of the coupling constants to dimensionless variables

v
”Qi/ﬁ,mﬁﬁm,u—}—,}\%ﬁgm}‘, (B2)
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the dependance on y and k is removed from the equations of motion and the action scales as

S—=—8=——=65, (B3)

where p is an arbitrary mass scale. In practice, while searching for solutions this scaling freedom
allows us to fix one parameter (e.g. m or N in the first theory and A or NV in the second theory)

and vary the rest.
ST T ———



Generalisations of GS wormholes
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Figure 9: A more complete version of the plot shown in Fig. 8, containing curves at additional values of
the dilaton coupling 3. The inversion of the branch structure above 3; (i.e. for the curves with g > 1.58) is

clearly visible. See the main text for a detailed analysis.




Symmetric double well
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Symmetric double well potential for the parameter values A = 0.01 and v = 0.4.




