Introduction Models

Evaporation 00000000 **S-matri**x 000000 Conclusion

Backup slides

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Real-time path integral for semiclassical description of evaporating black holes

Maxim Fitkevich

Institute for Nuclear Research of RAS Moscow Institute of Physics and Technology

International Conference on Particle Physics and Cosmology

2023 October 2, Yerevan

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
•	00000	0000000	000000	00	00000000000000
The Goal:	Informa	ation loss p	roblem		

• Apparent violation of unitarity:

 $\hat{\rho}_{\textit{in}} = |\Psi_{\textit{in}}\rangle\langle\Psi_{\textit{in}}| \ \mapsto \ \hat{\rho}_{\textit{out}} = \mathrm{Tr}_{\textit{BH}}\left(|\Psi_{\textit{ext}}\rangle|\Psi_{\textit{BH}}\rangle\langle\Psi_{\textit{BH}}|\langle\Psi_{\textit{ext}}|\right),$

 $\operatorname{Tr}(\hat{\rho}_{out}^2) < 1$

S. W. Hawking, 1976

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Apparent violation of unitarity:

 $\hat{\rho}_{\textit{in}} = |\Psi_{\textit{in}}\rangle\langle\Psi_{\textit{in}}| \ \mapsto \ \hat{\rho}_{\textit{out}} = \text{Tr}_{\textit{BH}}\left(|\Psi_{\textit{ext}}\rangle|\Psi_{\textit{BH}}\rangle\langle\Psi_{\textit{BH}}|\langle\Psi_{\textit{ext}}|\right),$

 $\operatorname{Tr}(\hat{\rho}_{out}^2) < 1$

S. W. Hawking, 1976

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Pro-unitary arguments:
 - Holography: gauge/string duality (AdS/CFT)
 - Islands: unitary Page curve.

1911.12333 [hep-th] Almheiri, 1905.08255 [hep-th] Pennington ...

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
•	00000	00000000	000000	00	00000000000000
The Goal:	Informat	ion loss p	roblem		

• Apparent violation of unitarity:

 $\hat{\rho}_{\textit{in}} = |\Psi_{\textit{in}}\rangle\langle\Psi_{\textit{in}}| \ \mapsto \ \hat{\rho}_{\textit{out}} = \mathrm{Tr}_{\textit{BH}}\left(|\Psi_{\textit{ext}}\rangle|\Psi_{\textit{BH}}\rangle\langle\Psi_{\textit{BH}}|\langle\Psi_{\textit{ext}}|\right),$

 $\operatorname{Tr}(\hat{\rho}_{out}^2) < 1$

S. W. Hawking, 1976

- Pro-unitary arguments:
 - Holography: gauge/string duality (AdS/CFT)
 - Islands: unitary Page curve.

1911.12333 [hep-th] Almheiri, 1905.08255 [hep-th] Pennington ...

- Problems?
 - AMPS-firewall: unitarity vs equivalence principle.
 - Dynamics: S-matrix derivation.

ArXiv:gr-qc/9607022 't Hooft

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	0000	0000000	000000	00	000000000000000
Models					

Models w/ linear dilaton vacuum

$$S_{\rm LDV} = \int d^2 x \sqrt{-g} \left(W(\phi) R + W''(\phi) \left((\nabla \phi)^2 + \lambda^2 \right) \right) + S^{\rm m}$$

ArXiv:2005.09479 [hep-th] Banks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	0000000	000000	00	000000000000000000000000000000000000000
Models					

Models w/ linear dilaton vacuum

$$S_{\rm LDV} = \int d^2 x \sqrt{-g} \left(W(\phi) R + W''(\phi) \left((\nabla \phi)^2 + \lambda^2 \right) \right) + S^{\rm m}$$

ArXiv:2005.09479 [hep-th] Banks

Field equations

$$W'(\phi)R = 2W''(\phi)\Box\phi + W'''(\phi)\left((\nabla\phi)^2 - \lambda^2\right) ,$$

$$g_{\mu\nu}\left(W''(\phi)((\nabla\phi)^2 - \lambda^2) + 2W'(\phi)\Box\phi\right) - 2W'(\phi)\nabla_{\mu}\nabla_{\nu}\phi = T^{\mathrm{m}}_{\ \mu\nu} ,$$

where $T^{\rm m}_{\ \mu\nu} = (-2/\sqrt{-g})\delta S^{\rm m}/\delta g^{\mu\nu}$.

Vacuum solution

$$ds^2 = -f(r)dt^2 + rac{dr^2}{f(r)} , \qquad \phi = -\lambda r , \qquad f(r) = 1 + rac{M}{\lambda W'(\phi)}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	0000000	000000	00	000000000000000000000000000000000000000
Models					

CGHS model

$$S = \int d^2 x \sqrt{-g} \left[e^{-2\phi} \left(R + 4(\nabla \phi)^2 + 4\lambda^2 \right) - \frac{1}{2} (\nabla f)^2 \right]$$

ArXiv:9111056 [hep-th] C. Callan, S. Giddings, J. Harvey, A. Strominger, 1991

In the bulk:

$$ds^{2} = -e^{2\phi} dv du,$$

$$f(v, u) = f_{out}(u) + f_{in}(v)$$

$$e^{-2\phi} = -\lambda^{2} vu - \mathcal{T}(v) - \mathcal{H}(u)$$

$$\partial_{v}^{2} \mathcal{T} = (\partial_{v} f_{in})^{2}/2, \ \partial_{u}^{2} \mathcal{H} = (\partial_{u} f_{out})^{2}/2$$

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	0000000	000000	00	000000000000000000000000000000000000000
Models					

CGHS model w/ dynamical boundary $\phi = \phi_0$

$$S = \int d^2 x \sqrt{-g} \left[e^{-2\phi} \left(R + 4(\nabla \phi)^2 + 4\lambda^2 \right) - \frac{1}{2} (\nabla f)^2 \right] + 2 \int d\tau e^{-2\phi} \left(K + 2\lambda \right) d\tau$$

ArXiv:1702.02576 [hep-th] M.F., D. Levkov, Y. Zenkevich, 2017

In the bulk:

$$ds^{2} = -e^{2\phi} dv du,$$

$$f(v, u) = f_{out}(u) + f_{in}(v)$$

$$e^{-2\phi} = -\lambda^{2}vu - \mathcal{T}(v) - \mathcal{H}(u)$$

$$\partial_{v}^{2}\mathcal{T} = (\partial_{v}f_{in})^{2}/2, \ \partial_{u}^{2}\mathcal{H} = (\partial_{u}f_{out})^{2}/2$$
On the boundary:
Reflecting condition $f_{out}(U(v)) = f_{in}(v)$
Weak coupling: $g_{gr} = e^{\phi} \le e^{\phi_{0}} \ll 1$
Minimal BH mass $M_{cr} = 2\lambda e^{-2\phi_{0}}$

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	0000000	000000	00	000000000000000000000000000000000000000
Models					

Sinh-CGHS model

$$S_{\mathrm{sinh}} = -2 \int d^2 x \sqrt{-g} \sinh(2\phi) \left(R + 4(\nabla\phi)^2 + 4\lambda^2\right)$$

ArXiv:2202.00023 [gr-qc] M.F.

Vacuum solution w/ metric function (fig. a)

$$f(r) = 1 - \frac{M}{4\lambda \cosh(2\lambda r)}$$

Ricci scalar (fig. b) $R = -\partial_r^2 f(r)$ is finite everywhere. Non-singular black holes:

• Limiting curvature $R_{\mu\nu\rho\sigma}^2 < \Lambda^2$.

Markov, 2111.14318 [gr-qc] Frolov ...

• Other models: Bardeen's black hole, black bounces, planck stars...

1812.07114 [gr-qc] Visser, 1802.04264 [gr-qc] Rovelli...

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	0000000	000000	00	000000000000000000000000000000000000000
Models					

Sinh-CGHS model

$$S_{\rm sinh} = -2 \int d^2 x \sqrt{-g} \sinh(2\phi) \left(R + 4(\nabla\phi)^2 + 4\lambda^2\right)$$

ArXiv:2202.00023 [gr-qc] M.F. Extremal black hole Non-extremal black hole $M = M_{ext}$ $M > M_{ext}$ Gravitational kink $M < M_{ext}$ < 0 $\phi > 0$ $\phi < 0$ $\dot{a} > \dot{0}$ (c) ・ロト ・日下 ・日下 э

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	0000000	000000	00	00000000000000
Thermod	dynamic p	properties			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Euclidean solution

$$ds_{E}^{2} = f(r)dt_{E}^{2} + \frac{dr^{2}}{f(r)}, \qquad 0 \leq t_{E} < \beta_{H},$$

has imaginary time period

$$\beta_H = T_H^{-1} = 4\pi/f'(r_h)$$

 \Leftarrow no conifold singularity at $r = r_{\rm h}$. Derive black hole temperature and entropy

$$T_{H} = \frac{\lambda^2 W''(\phi_{\rm h})}{4\pi M}$$

$$S_{
m BH}(M) = 4\pi W(\phi_{
m h}) - 4\pi W(\phi_{
m h,\,ext})$$

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	0000000	000000	00	00000000000000
Thermod	dynamic r	properties			

Euclidean solution

$$ds_{E}^{2} = f(r)dt_{E}^{2} + rac{dr^{2}}{f(r)}, \qquad 0 \leq t_{E} < \beta_{H},$$

has imaginary time period

$$\beta_H = T_H^{-1} = 4\pi/f'(r_h)$$

 \Leftarrow no conifold singularity at $r = r_{\rm h}$. Derive black hole temperature and entropy

$$\boxed{T_H = \frac{\lambda^2 W''(\phi_{\rm h})}{4\pi M}}$$

$$S_{
m BH}(M) = 4\pi W(\phi_{
m h}) - 4\pi W(\phi_{
m h,\,ext})$$

$$S_{BH} = rac{2\pi}{\lambda} M \sqrt{1 - rac{M_{
m ext}^2}{M^2}}$$
 $T_H = rac{\lambda}{2\pi} \sqrt{1 - rac{M_{
m ext}^2}{M^2}}$

Sinh-CGHS reduces to CGHS in $M_{\rm ext}
ightarrow 0.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Island formula for black hole entropy

$$\mathcal{S}_{ ext{gen}}[R] = \min_{I} \exp_{\partial I} \left(\mathcal{S}_{ ext{grav}}[\partial I] + \mathcal{S}_{ ext{ent}}[R \cup I]
ight).$$

Ref. D. Ageev's talk at Friday.

Island formula for black hole entropy

$$\mathcal{S}_{ ext{gen}}[R] = \min_{l} \, \exp_{l} \left(\mathcal{S}_{ ext{grav}}[\partial l] + \mathcal{S}_{ ext{ent}}[R \cup l]
ight).$$

Ref. D. Ageev's talk at Friday.

イロト 不得 トイヨト イヨト

ъ

For linear dilaton gravity

$$S_{\rm gen} = 8\pi W(-\lambda r_Q) + \frac{N}{3} \log(\epsilon^{-2}(v_O - v_Q)(u_Q - u_O)) + \frac{N}{3}(\rho_O + \rho_Q)$$

where ρ is conformal factor: $ds^2=-e^{2\rho}dvdu.$ Vary $S_{\rm gen}$ with respect to t_Q and $r_Q.$

Island formula for black hole entropy

$$\mathcal{S}_{ ext{gen}}[R] = \min_{I} \, \exp_{\partial I} \left(\mathcal{S}_{ ext{grav}}[\partial I] + \mathcal{S}_{ ext{ent}}[R \cup I]
ight).$$

Ref. D. Ageev's talk at Friday.

For linear dilaton gravity

$$S_{\rm gen} = 8\pi W(-\lambda r_Q) + \frac{N}{3} \log(\epsilon^{-2}(v_O - v_Q)(u_Q - u_O)) + \frac{N}{3}(\rho_O + \rho_Q)$$

where ρ is conformal factor: $ds^2=-e^{2\rho}dvdu.$ Vary $S_{\rm gen}$ with respect to t_Q and $r_Q.$

Numerically for sinh-CGHS:

$$S_{gen} = \frac{2\pi}{\lambda} M \sqrt{1 - \frac{M_{ext}^2}{M^2}} + O\left(N \log \frac{M - M_{ext}}{\lambda}\right)$$

Diverges at $M \to M_{ext}$.

Consider CGHS w/ boundary; coordinates in $ds^2 = -e^{2\rho} d\bar{v}\bar{u}$ are flat at infinity: $\rho(\mathcal{I}^{\pm}) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider CGHS w/ boundary; coordinates in $ds^2 = -e^{2\rho} d\bar{v}\bar{u}$ are flat at infinity: $\rho(\mathcal{I}^{\pm}) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider CGHS w/ boundary; coordinates in $ds^2 = -e^{2\rho} d\bar{v}\bar{u}$ are flat at infinity: $\rho(\mathcal{I}^{\pm}) = 0$.

Unitarity entropy bound $S \leq O(Area)$

ArXiv:2003.05546 [hep-th] G. Dvali, 2020 (also plenary talk tomorrow)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Introduction O	Models 00000	Evaporation	S-matrix 000000	Conclusion	Backup slides 000000000000000
Law of e	vaporatic	on			

(ロ)、(型)、(E)、(E)、 E) のQ()

2D Stefan-Boltzmann

$$\frac{dM}{dt} = -\frac{\pi}{12} T_H^2(M)$$

 \Rightarrow averaged mass function

$$M(t) + rac{M_{ ext{ext}}}{2} \log\left(rac{M(t)-M_{ ext{ext}}}{M(t)+M_{ ext{ext}}}
ight) = M_0 - rac{\lambda^2 t}{48\pi}$$

with initial value $M_0 \gg M_{\rm ext}.$

$$\frac{dM}{dt} = -\frac{\pi}{12}T_H^2(M)$$

 \Rightarrow averaged mass function

$$M(t) + rac{M_{ ext{ext}}}{2} \log\left(rac{M(t)-M_{ ext{ext}}}{M(t)+M_{ ext{ext}}}
ight) = M_0 - rac{\lambda^2 t}{48\pi}$$

with initial value $M_0 \gg M_{\rm ext}$.

Mean field w/ 1-loop:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$\frac{dM}{dt} = -\frac{\pi}{12} T_H^2(M)$$

 \Rightarrow asymptotically

$$M \simeq M_{
m ext} \left(1 + \exp\left(-rac{\lambda^2 t}{24\pi M_{
m ext}}
ight)
ight)$$

i.e. remnant is formed.

$$\frac{dM}{dt} = -\frac{\pi}{12} T_H^2(M)$$

 \Rightarrow asymptotically

$$M \simeq M_{
m ext} \left(1 + \exp\left(- rac{\lambda^2 t}{24 \pi M_{
m ext}}
ight)
ight)$$

i.e. remnant is formed.

Fluctuations of Hawking flux

$$\langle:\Delta\hat{T}_{tr}:\rangle = O(1)\langle:\hat{T}_{tr}:\rangle$$

on timescale O(M)

gr-qc/9905012 Wu, Ford

$$\frac{dM}{dt} = -\frac{\pi}{12} T_H^2(M)$$

 \Rightarrow asymptotically

$$M \simeq M_{
m ext} \left(1 + \exp\left(- rac{\lambda^2 t}{24 \pi M_{
m ext}}
ight)
ight)$$

i.e. remnant is formed.

Fluctuations of Hawking flux

$$\langle:\Delta\hat{T}_{tr}:\rangle = O(1)\langle:\hat{T}_{tr}:\rangle$$

on timescale O(M)

gr-qc/9905012 Wu, Ford

w/ q/thermal noise:

From fluctuations theory

$$\langle (\Delta M)^2
angle = - rac{\partial \langle E
angle}{\partial eta} \simeq rac{\lambda^2}{M_{
m ext}} O(1)$$

assuming $\Delta M \ll M_{\rm ext}$.

$$M \simeq M_{\mathrm{ext}} \left(1 + \exp\left(-rac{\lambda^2 t}{24\pi M_{\mathrm{ext}}}
ight)
ight)$$

w/ q/thermal noise:

From fluctuations theory

$$\langle (\Delta M)^2 \rangle = - \frac{\partial \langle E \rangle}{\partial \beta} \simeq \frac{\lambda^2}{M_{\mathrm{ext}}} O(1)$$

assuming $\Delta M \ll M_{\rm ext}$.

$$M\simeq M_{
m ext}\left(1+\exp\left(-rac{\lambda^2 t}{24\pi M_{
m ext}}
ight)
ight)$$

Thermal estimate

$$t_{
m dec} \simeq 48\pi rac{M_{
m ext}}{\lambda^2} \log\left(rac{M_{
m ext}}{\lambda}
ight)$$

 $\langle M(t) \rangle_2$ M_0 $M_{\rm ext}$ 0 matter i'_0

< □ > < @ > i ≥ >

< ∃→

э

 i_0

w/ q/thermal noise:

From fluctuations theory

$$\langle (\Delta M)^2 \rangle = - \frac{\partial \langle E \rangle}{\partial \beta} \simeq \frac{\lambda^2}{M_{\mathrm{ext}}} O(1)$$

assuming $\Delta M \ll M_{\rm ext}$.

$$M\simeq M_{
m ext}\left(1+\exp\left(-rac{\lambda^2 t}{24\pi M_{
m ext}}
ight)
ight)$$

Thermal estimate

$$t_{
m dec} \simeq 48\pi rac{M_{
m ext}}{\lambda^2} \log\left(rac{M_{
m ext}}{\lambda}
ight)$$

Adiabaticity condition

$$T \frac{\partial T}{\partial M} \ll T \Rightarrow T \frac{\partial S}{\partial T} \gg 1 \Rightarrow T \gg \frac{\lambda^2}{4\pi^2 M_{\text{ext}}}$$

We need quantum treatment of remnant

ъ

< □ > < □ > i ≥ >

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	00000000	00000	00	00000000000000
S-matrix	from pat	h integral			

$$\langle \Psi_{out} | \hat{\mathbf{S}} | \Psi_{in} \rangle = \int \mathcal{D} \Phi \, \Psi_{out}^* \Psi_{in} \exp\{\frac{i}{\hbar} \mathbf{S}[\Phi]\} , \quad \Phi = \{g_{\mu\nu}, \, \phi, \, f\}$$

(ロ)、(型)、(E)、(E)、 E) のQ()

$$\langle \Psi_{out} | \hat{\mathbf{S}} | \Psi_{in} \rangle = \int \mathcal{D} \Phi \, \Psi_{out}^* \Psi_{in} \exp\{\frac{i}{\hbar} \mathbf{S}[\Phi]\} \,, \quad \Phi = \{g_{\mu\nu}, \, \phi, \, f\}$$

• Semiclassics $\Rightarrow \frac{\delta}{\delta \Phi} S = 0 \Rightarrow$ with Φ_s with flat asymptotics. Trivial if $E < E_{thr.}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\langle \Psi_{out} | \hat{\mathbf{S}} | \Psi_{in} \rangle = \int \mathcal{D} \Phi \, \Psi_{out}^* \Psi_{in} \exp\{\frac{i}{\hbar} \mathbf{S}[\Phi]\} \,, \quad \Phi = \{g_{\mu\nu}, \, \phi, \, f\}$$

• Semiclassics $\Rightarrow \frac{\delta}{\delta \Phi} S = 0 \Rightarrow$ with Φ_s with flat asymptotics. Trivial if $E < E_{thr.}$

- <u>Idea</u>: find saddles at $E > E_{thr.}$ by analytic continuation avoiding singularities.
 - <u>Problem</u>: complexification of spacetime is ambiguous.

$$\langle \Psi_{out} | \hat{\mathbf{S}} | \Psi_{in} \rangle = \int \mathcal{D} \Phi \, \Psi_{out}^* \Psi_{in} \exp\{\frac{I}{\hbar} \mathbf{S}[\Phi]\} , \quad \Phi = \{g_{\mu\nu}, \, \phi, \, f\}$$

• Semiclassics $\Rightarrow \frac{\delta}{\delta \Phi} S = 0 \Rightarrow$ with Φ_s with flat asymptotics. Trivial if $E < E_{thr.}$

- <u>Idea</u>: find saddles at $E > E_{thr.}$ by analytic continuation avoiding singularities.
 - <u>Problem</u>: complexification of spacetime is ambiguous.
- Non-singular model can help!

CGHS w/ boundary ϕ_0 and matter action $S_m = -m \int d\tau$. EOM follows from Israel condition

$$\left(\frac{dr}{d\tau}\right)^2 + V_{eff}(r) = 0$$

where $V_{eff}(r) = 1 - \left(\frac{M}{m} + \frac{m}{8\lambda}e^{-2\lambda r}\right)^2$

ArXiv: 2006.03606 M.F., D. Levkov, S. Sibiryakov, 2020

CGHS w/ boundary ϕ_0 and matter action $S_m = -m \int d\tau$. EOM follows from Israel condition

$$\left(\frac{dr}{d\tau}\right)^2 + V_{eff}(r) = 0$$

where
$$V_{eff}(r) = 1 - \left(rac{M}{m} + rac{m}{8\lambda}e^{-2\lambda r}
ight)^2$$

Semiclassical scattering amplitude

$$\mathcal{A}_{fi} = \langle \Psi_f | \hat{U} | \Psi_i
angle = \int \mathcal{D} \Phi \, \Psi_f^* [\Phi] \Psi_i [\Phi] e^{i S'[\Phi]} \simeq F \cdot e^{i S_{ ext{tot}}}$$

where $S_{tot} = S(t_f, t_i) + S_0(t_i, 0_-) + S_0(0_+, t_f) - i \ln \Psi_i - i \ln \Psi_f^*$

ArXiv: 2006.03606 M.F., D. Levkov, S. Sibiryakov, 2020

How to finds complex trajectory. Let functional T_{int} has properties:

- diff. invariant
- positive-definite for real solutions
- diverges for solutions with eternal black hole and finite for asy. flat

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to finds complex trajectory. Let functional T_{int} has properties:

- diff. invariant
- positive-definite for real solutions
- diverges for solutions with eternal black hole and finite for asy. flat Inserting into path integral a unity

$$1 = \int_{0}^{+\infty} dT_0 \, \delta(T_{\rm int}[\Phi] - T_0) = \int_{0}^{+\infty} dT_0 \int_{-i\infty}^{+i\infty} \frac{d\varepsilon}{2\pi i} \, e^{-\varepsilon(T_{\rm int} - T_0)}$$

is equivalent to complexifying the acton:

$$S_{\varepsilon}[\Phi] = S[\Phi] + i\varepsilon T_{\text{int}}[\Phi] - i\varepsilon T_0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides		
	00000	00000000	000000	00	000000000000000		
Example: Point-particle scattering amplitude							

How to finds complex trajectory. Let functional T_{int} has properties:

- diff. invariant
- positive-definite for real solutions
- diverges for solutions with eternal black hole and finite for asy. flat Inserting into path integral a unity

$$1 = \int_{0}^{+\infty} dT_0 \, \delta(T_{\rm int}[\Phi] - T_0) = \int_{0}^{+\infty} dT_0 \int_{-i\infty}^{+i\infty} \frac{d\varepsilon}{2\pi i} \, e^{-\varepsilon(T_{\rm int} - T_0)}$$

is equivalent to complexifying the acton:

$$S_{\varepsilon}[\Phi] = S[\Phi] + i\varepsilon T_{\mathrm{int}}[\Phi] - i\varepsilon T_0$$

Result: T-functional shifts mass $M \mapsto M+i\varepsilon$. Tested on models with collapsing shells.

ArXiv:1503.07181, F. Bezrukov, D. Levkov, S. Sibiryakov, 2015

Consistent with Hamiltonian methods.

ArXiv: 9907001 [hep-th] M. Parikh, F. Wilczek

For massless particle

$$S_{
m tot} = -rac{M-M_{
m cr}}{\lambda} \log \left(1-rac{M+iarepsilon}{M_{
m cr}}
ight) + rac{M}{\lambda} \left(1-\log rac{M_{
m cr}}{2\lambda}
ight)$$

ArXiv: 2006.03606 M.F., D. Levkov, S. Sibiryakov, 2020

For massless particle

$$S_{\text{tot}} = -\frac{M - M_{\text{cr}}}{\lambda} \log \left(1 - \frac{M + i\varepsilon}{M_{\text{cr}}}\right) + \frac{M}{\lambda} \left(1 - \log \frac{M_{\text{cr}}}{2\lambda}\right)$$

transition probability $\mathcal{P}_{\text{fi}} = |\mathcal{A}_{\text{fi}}|^2 \approx \exp\left(-2\Im m S_{\text{tot}}\right) = \exp\left(-S_{BH}\right)$
where $S_{BH} = \frac{2\pi}{\lambda} (M - M_{\text{cr}})$ - entropy in model with stiff boundary.

ArXiv: 2006.03606 M.F., D. Levkov, S. Sibiryakov, 2020

<u>Coherent state formalism.</u> $\hat{a}_k |a\rangle = a_k |a\rangle$, where \hat{a}_k - annihilation operator. S-matrix elements

$$\langle b|S|a
angle = \int \mathcal{D}\{f_{out}, f_{in}, f, \phi, g\} \langle b|f_{out}
angle e^{iS[\Phi]}\langle f_{in}|a
angle$$

can be computed semiclassically.

<u>Coherent state formalism.</u> $\hat{a}_k |a\rangle = a_k |a\rangle$, where \hat{a}_k - annihilation operator. S-matrix elements

$$\langle b|S|a
angle = \int \mathcal{D}\{f_{out}, f_{in}, f, \phi, g\} \langle b|f_{out}
angle e^{iS[\Phi]}\langle f_{in}|a
angle$$

can be computed semiclassically.

Multiparticle scattering $A_{2 \rightarrow \text{many}}$ may be unsuppressed (T/ θ boundary problem)

Rubakov, Son, Tinyakov et al, 1990~

See recent progress on scattering amplitudes $\lambda \varphi^4$ -theory in

Ref. B. Farkhtdinov's after next talk

<u>Coherent state formalism.</u> $\hat{a}_k |a\rangle = a_k |a\rangle$, where \hat{a}_k - annihilation operator. S-matrix elements

$$\langle b|S|a
angle = \int \mathcal{D}\{f_{out}, f_{in}, f, \phi, g\} \langle b|f_{out}
angle e^{iS[\Phi]}\langle f_{in}|a
angle$$

can be computed semiclassically.

Multiparticle scattering $A_{2 \rightarrow \text{many}}$ may be unsuppressed (T/ θ boundary problem)

Rubakov, Son, Tinyakov et al, 1990~

See recent progress on scattering amplitudes $\lambda \varphi^4-{\rm theory}$ in

Ref. B. Farkhtdinov's after next talk

But we failed: CGHS model has exact solutions, but S-matrix functional diverges at $E > E_{thr.}$. Next attempt: sinh-CGHS - not as solvable as CGHS /w ϕ_0 but numerically tractable at least.

Check explicitly $1=\mathcal{S}^{\dagger}\mathcal{S}$ or in coherent states basis

$$e^{\int dk a_k^* b_k} = \int \mathcal{D} c_k^* \mathcal{D} c_k \; e^{-\int dk c_k^* c_k} \langle a | \mathcal{S}^{\dagger} | c
angle \langle c | \mathcal{S} | b
angle$$

Check explicitly $1=\mathcal{S}^{\dagger}\mathcal{S}$ or in coherent states basis

$$e^{\int dk a_k^* b_k} = \int \mathcal{D} c_k^* \mathcal{D} c_k \; e^{-\int dk c_k^* c_k} \langle a | \mathcal{S}^{\dagger} | c
angle \langle c | \mathcal{S} | b
angle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Benchmark tests:

() free field theory $\mathcal{L}=(\partial\phi)^2-m^2\phi^2$ - trivial identity

Check explicitly $1=\mathcal{S}^{\dagger}\mathcal{S}$ or in coherent states basis

$$e^{\int dk a_k^* b_k} = \int \mathcal{D} c_k^* \mathcal{D} c_k \; e^{-\int dk c_k^* c_k} \langle a | \mathcal{S}^{\dagger} | c
angle \langle c | \mathcal{S} | b
angle$$

Benchmark tests:

- **(**) free field theory $\mathcal{L} = (\partial \phi)^2 m^2 \phi^2$ trivial identity
- Solution free field with a source $+J(x)\phi(x)$ manifestly non-unitary

Check explicitly $1 = \mathcal{S}^{\dagger} \mathcal{S}$ or in coherent states basis

$$e^{\int dk a_k^* b_k} = \int \mathcal{D} c_k^* \mathcal{D} c_k \; e^{-\int dk c_k^* c_k} \langle a | \mathcal{S}^{\dagger} | c
angle \langle c | \mathcal{S} | b
angle$$

Benchmark tests:

- **9** free field theory $\mathcal{L} = (\partial \phi)^2 m^2 \phi^2$ trivial identity
- **3** free field with a source $+J(x)\phi(x)$ manifestly non-unitary
- field with quartic interaction $+\lambda m^{4-D}\phi^4$ from unitarity limit $\sigma \sim \frac{\lambda^2}{m^2} \left(\frac{E}{m}\right)^{2D-10} \lesssim \frac{O(1)}{E^2}$ unitary $D \leq 4$ and non-unitary D > 4

Check explicitly $1 = \mathcal{S}^{\dagger} \mathcal{S}$ or in coherent states basis

$$e^{\int dk a_k^* b_k} = \int \mathcal{D} c_k^* \mathcal{D} c_k \; e^{-\int dk c_k^* c_k} \langle a | \mathcal{S}^{\dagger} | c
angle \langle c | \mathcal{S} | b
angle$$

Benchmark tests:

- **9** free field theory $\mathcal{L} = (\partial \phi)^2 m^2 \phi^2$ trivial identity
- **3** free field with a source $+J(x)\phi(x)$ manifestly non-unitary
- field with quartic interaction $+\lambda m^{4-D}\phi^4$ from unitarity limit $\sigma \sim \frac{\lambda^2}{m^2} \left(\frac{E}{m}\right)^{2D-10} \lesssim \frac{O(1)}{E^2}$ unitary $D \leq 4$ and non-unitary D > 4
- 4-derivative scalar theory $\mathcal{L} = \phi \Box^2 \phi + g(\partial \phi)^4$ non-unitary

ArXiv:2212.10599 [hep-th], A. Tseytlin, 2023

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	0000000	000000	•0	00000000000000
Conclusion	l				

- We introduced linear dilaton models for studying gravitational S-matrix:
 - CGHS with dynamical boundary;
 - sinh-CGHS with regular black holes.
- We studied thermodynamics properties and remnant scenario in regular model.
- We proposed a semiclassical path integral method for calculating S-matrix elements and calculated scattering amplitude for point-like particle which is consistent with unitarity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

New model awaits!

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
0	00000	0000000	000000	0•	000000000000000000000000000000000000000

Շևորհակալություն

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

We choose explicitly

$$T_{\rm int} = \int d^2 x \sqrt{-g} \frac{f(\phi)}{\lambda^2} (\lambda^2 - (\partial_\mu \phi)^2)^2$$

where $f(\phi(r))$ has support on $r \gg r_0$ The metric has form $ds^2 = -e^{\nu(r)}dt^2 + e^{\zeta(r)}dr^2$ and $\phi = -\lambda r$, complexified field equations, e.g.

$$\partial_r \left(1-e^{-\zeta}\right)+2\lambda \left(1-e^{-\zeta}\right)+\frac{i\varepsilon\lambda}{2}f(-\lambda r)e^{-2\lambda r}\left(1-e^{-\zeta}\right)^2=0$$
,

have solution

$$1 - e^{-\zeta(r)} = \frac{M}{2\lambda} e^{-2\lambda r} \left(1 - \frac{i\varepsilon M}{4\lambda} \int_{-\infty}^{\phi(r)} d\phi f(\phi) \right)^{-1}$$

We see that inserting iT_{int} is equivalent to imaginary shift $M \mapsto M + i\varepsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

$$\mathcal{A}_{fi} = \langle \Psi_f | \hat{U} | \Psi_i
angle = \int \mathcal{D} \Phi \, \Psi_f^* [\Phi] \Psi_i [\Phi] e^{i S'[\Phi]} \simeq F \cdot e^{i S_{ ext{tot}}}$$

where $S_{tot} = S(t_f, t_i) + S_0(t_i, 0_-) + S_0(0_+, t_f) - i \ln \Psi_i - i \ln \Psi_f^*$

- $S(t_f, t_i)$ interacting action
 - $S_{CGHS}[g,\phi]$ dilaton field and metric
 - $S_m = -m \int ds$ point particle
 - $S_{GH} = 2\kappa \int d\sigma \ e^{-2\phi} (K K_0)$ Gibbons-Hawking term

3
$$S_0$$
 - free evolution $\hat{S} = \hat{U}_0 \hat{U} \hat{U}_0 \Big|_{-\infty}^{+\infty}$

9 $\Psi_{i,f} \approx e^{ipr}$ - particle wave functions (in- and out-states)

Gravitational part

• CGHS action

$$S_{\rm CGHS} = 2 \int d^2 x \sqrt{-g} \, \Box e^{-2\phi}$$

Gibbons-Hawking action

$$S_{GH} = 2\kappa \int d\sigma \ e^{-2\phi} (K - K_0)$$

• $K_0 = 2\lambda$, $\kappa = 1$ at $r \to +\infty$ • $K_0 = 0$, $\kappa = -1$ at $t \to \pm\infty$ Field equations of motion \Rightarrow

$$S_{gr} = 2\kappa \oint d\sigma \ e^{-2\phi_0} K$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

• Boundary $\phi = \phi_0$

$$S_{\phi_0} = 2e^{-2\phi_0} \int_{\phi=\phi_0} d\tau K$$

$$(n^{\tau}, n^n) = (-\operatorname{sh}\psi(\tau), -\operatorname{ch}\psi(\tau))$$

$$\int_{\phi=\phi_0} d\tau K = \psi_+ - \psi_-$$

$$(n^{\tau}, n^n) = (-\operatorname{sh}\psi(\tau), -\operatorname{ch}\psi(\tau))$$

$$\int_{\phi=\phi_0} d\tau K = \psi_+ - \psi_-$$

$$(n^{\tau}, n^n) = (-\operatorname{sh}\psi(\tau), -\operatorname{ch}\psi(\tau))$$

$$\int_{\phi=\phi_0} d\tau K = \psi_+ - \psi_-$$

$$(n^{\tau}, n^n) = (-\operatorname{sh}\psi(\tau), -\operatorname{ch}\psi(\tau))$$

$$\int_{\phi=\phi_0} d\tau K = \psi_+ - \psi_-$$

$$(n^{\tau}, n^n) = (-\operatorname{sh}\psi(\tau), -\operatorname{ch}\psi(\tau))$$

$$\int_{\phi=\phi_0} d\tau K = \psi_+ - \psi_-$$

$$(n^{\tau}, n^n) = (-\operatorname{sh}\psi(\tau), -\operatorname{ch}\psi(\tau))$$

$$(n^{\tau}, n^n) = (-\operatorname{sh}\psi(\tau), -\operatorname{sh}\psi(\tau))$$

$$(n^{\tau}, n^n)$$

$$K = 2\delta(\tau - \tau_0) \left(\operatorname{arsh} \sqrt{-V_{\text{eff}}(r_0)} - \operatorname{arsh} \sqrt{-V_{\text{eff}}(r_0)/f(r_0)} \right)$$

• Cauchy surfaces $t = t_{f,i}$

$$S_{t_f} = -2 \int d\sigma \, e^{-2\phi} K$$

 $S_{t_f} = S_{t_i} \simeq rac{p}{2\lambda} \,, \qquad p = \sqrt{M^2 - m^2}$

• Point particle action
$$S_m = -m \begin{bmatrix} r_i \\ \int_{r_0}^{r_i} + \int_{r_0}^{r_f} \end{bmatrix} \frac{dr}{\sqrt{-V_{\text{eff}}(r)}}$$
$$S_m = \frac{m^2}{\lambda p} \ln \left[\frac{1}{2} + \frac{Mm^2}{8M_{\text{cr}}p^2} + \frac{p_0}{2p} \right] - \frac{m^2(r_i + r_f - 2r_0)}{p}$$

• Contributions from in- and out- states

$$\Psi_{f,i} = \exp(\mp i p r_{\mp})$$

• Free point particle action $S_{m,0}$

$$S_0(t_i, 0_-) = p(r_- - r_i) - Mt_i, \qquad S_0(0_+, t_f) = p(r_+ - r_f) + Mt_f$$
$$t_f - t_i = \frac{M(r_i + r_f - 2r_0)}{p} + \dots$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides
	00000	00000000	000000	00	000 00 00000000
Calculation	of total	action	S_{tot}		

The result

W

$$\begin{split} S_{\rm tot} &= -\frac{M - M_{\rm cr}}{\lambda} \ln \left(1 - \frac{M + i\varepsilon}{M_{\rm cr}} \right) + \frac{p}{\lambda} \left(1 - \ln \frac{M_{\rm cr}}{2\lambda} \right) + \\ &- \frac{p}{\lambda} \ln \left(\frac{1}{2} + \frac{Mm^2}{8M_{\rm cr} p^2} + \frac{p_0}{2p} \right) + \frac{2M_{\rm cr}}{\lambda} \ln \left(\frac{4M_{\rm cr}(p_0 + M) + m^2}{4M_{\rm cr}(p_0 + M) - m^2} \right) + \\ &+ \frac{M}{\lambda} \ln \left(\frac{4M^3 - 3m^2M + (4M^2 - m^2)p_0}{(p + M)^3} + \frac{m^2(4M^2 + m^2)}{4M_{\rm cr}(p + M)^3} \right) \right) , \end{split}$$
here $p_0 = \sqrt{(M + m^2/4M_{\rm cr})^2 - m^2}.$

- The part of action which survives in the limit $m \rightarrow 0$ has color.
- Imaginary part of whole action

$$\Im m S_{\rm tot} = \frac{\pi}{\lambda} (M - M_{\rm cr}) \theta (M - M_{\rm cr})$$

contributes to suppression exponent for tunnelling probability.

Euclidean black hole exterior

ignores $\phi = \phi_0$.

- Wick rotate $t \mapsto t_E = it \Rightarrow ds_E^2 = f(r)dt_E^2 + \frac{dr^2}{f(r)}$
- The curvature
 $$\begin{split} R &= 4\pi (1-\beta T_H) \frac{\delta^2 (x-x_{hor})}{\sqrt{g}} + 2\lambda M e^{-2\lambda r} \\ \text{is regular at } x &= x_{hor} \text{ if } \beta = 2\pi/\lambda. \\ \text{Therefore, } S_E[\Phi_s] &= M\beta - M\beta_H. \end{split}$$

Gibbons-Hawking partition functional

$$\mathcal{Z}(eta) := \int_{\Phi[t_E] = \Phi[t_E + eta]} \mathcal{D}\Phi \; e^{-S_E[\Phi]} \; .$$

Free energy $F(\beta) := -\frac{1}{\beta} \ln Z(\beta) \simeq \frac{1}{\beta} S_E(\beta)$ \Rightarrow entropy $\Sigma_{BH} = \beta^2 \frac{\partial F(\beta)}{\partial \beta} = \beta \frac{\partial S_E(\beta)}{\partial \beta} - S_E(\beta) \Rightarrow \boxed{\tilde{\Sigma}_{BH} = \frac{M}{T_H} = \frac{2\pi}{\lambda}M}$. Parikh and Wilczek: $\mathcal{P}_{fi} \simeq e^{-\Sigma_{BH}} \Rightarrow \mathcal{P}_{fi}(M)$ has discontinuity at $M = M_{cr}$ (it's unphysical).

Consider critical collapse of thermal gas

- ⓐ т.к. $\mathcal{L}_{\text{grav.}} \sim e^{2\lambda r} \Rightarrow \text{decays at}$ distance~ λ^{-1}
- ${
 m com}~\Sigma_{
 m gas} \leq 2 M_{
 m cr}/T_{
 m gas},~T_{
 m gas} = \sqrt{6
 ho_{
 m gas}/\pi};$

$$\ \, {\it 0} \ \, \rho_{\rm gas} \simeq M_{\rm cr} \lambda;$$

• $\Sigma_{
m gas} \lesssim e^{-\phi_0} \ll ilde{\Sigma}_{BH}(M_{cr}) = 4\pi e^{-2\phi_0}$

Critical black hole entropy is parametrically small. Does not match with naive answer.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- boundary $\phi = \phi_0$ should persist in path integral
- since no regular saddle with boundary

$$\mathcal{D}\Lambda e^{-\int d\tau \Lambda(\tau)(\phi(x_*(\tau))-\phi_0)}$$

$$S_E(M', M) = M\beta - M\beta_H + M'\beta_H ,$$

$$S_E(M) = \min_{M'} S_E(M', M) \implies M' = M_{cr} .$$

Corrected answer is consistent with pointparticle scattering amplitude

$$\Sigma_{BH} = \frac{M}{T_H} = \frac{2\pi}{\lambda} (M - M_{\rm cr})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Introduction	Models	Evaporation	S-matrix	Conclusion	Backup slides	
	00000	00000000	000000	00	000000000000000000000000000000000000000	
Black bounce in sinh-CGHS						

Coordinate extension:

$$g(r) = \frac{\left(1 + \frac{M_{\text{ext}}}{M}\right) \tanh(\lambda r) - \frac{2\pi T_H}{\lambda}}{\left(1 + \frac{M_{\text{ext}}}{M}\right) \tanh(\lambda r) + \frac{2\pi T_H}{\lambda}} e^{4\pi T_H r}$$
$$T = \sqrt{g(r)} \sinh(2\pi T_H t)$$
$$R = \sqrt{g(r)} \cosh(2\pi T_H t)$$

Metric takes a form

$$ds^{2} = \frac{f(r)}{4\pi^{2}T_{H}^{2}g(r)} \left(-dT^{2} + dR^{2}\right)$$

Maps $(V_i, U_i) = (T_i + R_i, T_i - R_i)$ are identified by

 $V_{i+1} = -\kappa/V_i$, $U_{i+1} = -1/\kappa U_i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Example: conformal matter

$$T_{\mathrm{m}\mu\nu} =
abla_{\mu}f
abla_{\nu}f - rac{1}{2}g_{\mu\nu}(
abla f)^2 \; ,$$

Vaidya ansatz $ds^2 = -F(v, r)dv^2 + 2dvdr$ with incident wavepacket f(v) has solution

$$F(v,r) = \left(1 - rac{\mathcal{M}(v)}{4\lambda\cosh(2\lambda r)}
ight) \; ,$$

with Bondi mass

$$\mathcal{M}(v) = \int_{-\infty}^{v} dv' (\partial_v f(v'))^2$$

Vaidya solution with coordinates (r, v).

CGHS regime
$$M \gg M_{ext}$$
,
 $e^{-2\rho} = e^{-2\phi} = -\lambda^2 vu + g(v) + h(u)$,
 $g(v) = \frac{1}{2} \int_0^v dv' \int_{v'}^{+\infty} dv'' (\partial_v f(v''))^2$, $g(v) \simeq \frac{M}{2\lambda} - \frac{g_{\infty}}{(\lambda v)^{2\alpha}}$, $\alpha > 0$,
 $h(u) = -\frac{1}{2} \int_{-\infty}^u du' \int_{-\infty}^{u'} du'' (\partial_u f(u''))^2$, After crossing the core
 $f(v) \mapsto f_0 \cdot (-\lambda v)^{\alpha}$,

-

1

C. I

Ricci scalar near Cauchy horizon

$$\begin{split} R \simeq 4\lambda^2 e^{2\phi} \left(\frac{M}{2\lambda} + (2\alpha + 1)g_{\infty}(-\lambda v)^{2\alpha} + \frac{\mathcal{E}_{\text{out}}(u)}{2\lambda} + \frac{2\alpha + 1}{2\alpha - 1}\frac{2\alpha g_{\infty}}{\lambda}(-\lambda v)^{2\alpha - 1}\partial_u h(u) \right) \end{split}$$

is finite if $\alpha > 1/2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへ⊙

Introduction Models Evaporation S-matrix Conclusion Backup slides

Consider S-matrix elements (coherent states $\Rightarrow \hat{a}_k |a\rangle = a_k |a\rangle$)

$$\langle b_k | \hat{S} | a_k
angle = \int dc_k^* dc_k \, \langle b_k | \hat{S}_{
m reg} | c_k
angle \langle c_k | a_k
angle pprox e^{iS[c_k]} e^{-\Gamma[c_k]}$$

with \hat{S}_{reg} defined on subspace of topologically trivial spacetimes. Saddle point equation

$$i\frac{\delta S}{\delta c_k} = \frac{\delta \Gamma}{\delta c_k}$$

Role of states w/ negative energy density

- Typical semiclassical state Ψ localized wavepacket into remnant
- For any typical Ψ one can find non-typical Ψ' :

$$\langle \Psi' | \hat{T}_{\mu
u}(x) | \Psi^*
angle < 0$$

Fulling, Davies (1976) gr-qc/9711030 Roman, Ford

• Non-typical Ψ' cause remnant decay.

Common QFT counterpart: tunnelling through sphaleron. Neat example:

0903.3916 [quant-ph] Levkov, Panin