Suppression exponent for multiparticle production in $\lambda \phi^{4}$ theory

$$
\text { based on } 2212.03268 \text { and } 2111.04760
$$

S.V. Demidov, B.R. Farkhtdinov ${ }^{1,2}$, D.G. Levkov
${ }^{1}$ Institute for Nuclear Research of the Russian Academy of Sciences
${ }^{2}$ Moscow Institute of Physics and Technology

Multiparticle production

- Multiparticle probabilities
- Perturbation theory
- Exponentiation

Multiparticle processes

$n \gg 1$ bosons in the final state and $n_{i} \ll \lambda^{-1}$ in the initial

Examples

Counting diagrams

The number of tree diagrams $\propto n$!

The number of one-loop diagrams $\propto n!n^{2}$

Amplitudes on threshold

$$
\text { In theory } S[\phi]=\frac{1}{2} \int d^{4} x\left(-\phi \square \phi-m^{2} \phi^{2}-\frac{\lambda \phi^{4}}{2}\right)
$$

$$
A_{1 \rightarrow n}=\langle n, E=n m| \hat{\phi}(0)|0\rangle
$$

ϕ_{cl} is a generating functional

$$
\begin{gathered}
\langle n| \phi(x)|0\rangle=\left.\prod_{a=1}^{n} \int\left(d^{4} x_{a}\right) e^{p_{p_{a}} x_{a}}\left(-p_{a}^{2}+m^{2}\right) \frac{\delta}{\delta \rho\left(x_{a}\right)}\langle 0+| \phi(x)|0-\rangle^{\rho}\right|_{\rho=0} \\
S \longrightarrow S+\int d^{4} x \rho \phi \quad\langle 0+| \phi(x)|0-\rangle^{\rho} \equiv \phi_{\mathrm{cl}}(x)
\end{gathered}
$$

Tree-level and one loop

$\phi_{\mathrm{cl}}^{\text {tree }}-$ solution of the classical equation with $E=0$ [Brown, 1992]

$$
A_{1 \rightarrow n}^{\text {tree }}=n!\left(\frac{\lambda}{8 m^{2}}\right)^{\frac{n-1}{2}}, \mathrm{n}-\text { odd }
$$

Indeed factorial growth!

One-loop correction with $\phi_{\mathrm{cl}}^{\text {tree }}$ as a background [Voloshin, 1992]

$$
\underbrace{\substack{A_{1 \rightarrow n}^{1-\text { loop }}=A_{1 \rightarrow n}^{\text {tree }} B \lambda\left(n^{2}+O(n)\right) \\ B=\text { const } n \gg 1 \\ \hline}}_{\text {Indeed has } n!n^{2}}
$$

Amplitudes and probabilities

Correction near the threshold [Libanov et al., 1994]

$$
A_{1 \rightarrow n}^{\text {tree }}\left(p_{1}, \ldots, p_{n}\right) \approx A_{1 \rightarrow n}^{\text {tree }}(0) e^{-\frac{5}{6} \varepsilon n}, \quad \varepsilon=\frac{E}{n}-m \ll m
$$

Probability estimation

$$
P_{1 \rightarrow n}(\varepsilon)=\int \frac{\left|A_{1 \rightarrow n}\right|^{2}}{n!} \prod_{i} \frac{d^{3} p_{i}}{2 \omega_{i}} \approx \frac{\left|A_{1 \rightarrow n}(0)\right|^{2}}{n!} \times(\text { phase vol. }) \propto n!
$$

Growth persists!

Failure of perturbation theory

Perturbative series for $A_{1 \rightarrow \mathrm{n}}$ [Argyres, 1993]

$$
A_{1 \rightarrow n}=n!\left(\frac{\lambda}{8 m^{2}}\right)^{\frac{n-1}{2}}\left[1+\# \lambda\left(n^{2}+\cdots\right)+\# \lambda^{2}\left(n^{4}+\cdots\right)+\cdots\right]
$$

At L loops leading at $n \gg 1$ contribution $\propto n!\left(\lambda n^{2}\right)^{L}$
Blow up at $n \gtrsim \lambda^{-1}$

Series resummation

Resummation of leading at $n \gg 1$ contributions in all loops gives

$$
A_{1 \rightarrow n}^{\text {resummed }}=A_{1 \rightarrow n}^{\text {tree }} \exp \left(B \lambda^{2} n^{2} / \lambda\right)(\ldots)
$$

B is the same as in the one-loop $\propto n^{2}$ term[Libanov et al., 1994]

$$
\begin{gathered}
\text { At } n \gg 1 \\
A_{1 \rightarrow n}^{\text {tree }} \sim \sqrt{n!} \exp (\lambda n / 2 \lambda \ln \lambda n-\lambda n / 2 \lambda) \\
\text { Amplitude } \\
A_{1 \rightarrow n}^{\text {resummed }} \sim \sqrt{n!} \exp \left(F_{A}(\lambda n) / \lambda\right)
\end{gathered}
$$

Exponential form $\stackrel{?}{=}$ Semiclassical treatment

The exponent

Conjectures [Libanov et al., 1994]

1. $\quad P_{f e w \rightarrow n}(\varepsilon) \sim e^{F(\lambda n, \varepsilon) / \lambda}, n \gg 1, \lambda n, \varepsilon=$ const. $F(\lambda n, \varepsilon)-$ "holy grail" function 2. $F(\lambda n, \varepsilon)$ does not depend on the initial state if $n_{i} \ll \lambda^{-1}$

$$
\text { Semiclassical limit: } \lambda \rightarrow 0 ; \lambda n, \varepsilon=\text { const }
$$

"Higgsplosion"

It was suggested [Khoze et al., 2017] that at high energies

$$
\begin{gathered}
\text { probability } \propto e^{F_{\text {Higgsplosion }} / \lambda} \text { grows with } n \\
F_{\text {Higgsplosion }}=\lambda n \ln \left(\frac{\lambda n}{4}\right)+\frac{3}{2} \lambda n \ln \frac{\varepsilon}{3 \pi m}+\frac{\lambda n}{2}+0.845(\lambda n)^{3 / 2}, \quad n \leq n_{*}, E=n(m+\varepsilon) \\
F_{\text {Higgsplosion }}=0 \text { at } n_{*} \text { and still grows for } n>n_{*} \text { (unitarity?) } \\
\text { Result was obtained semiclassically with additional assumptions } \\
\text { Consistency check? }
\end{gathered}
$$

Method of singular solutions

- Formulation
- Numerical implementation
- Verification

Landau method in QM

In QM one can consider

$$
\left\langle E^{\prime}\right| \hat{O}|E\rangle \sim e^{f}, \quad f=-\operatorname{Im}\left[\int^{x_{5}}\left[2 m\left(E^{\prime}-V\right)\right]^{1 / 2} d x-\int^{x_{s}}[2 m(E-V)]^{1 / 2} d x\right]
$$

$$
\stackrel{x_{0} \bullet}{E>V\left(x_{0}\right)} \gg \quad{ }^{\bullet} \quad x_{*}
$$

- \hat{O} can be $\hat{x}, \hat{x}^{2}, \hat{p}$, etc. - answer is insensible
- x_{*} is a singular point of $V \Rightarrow$ singular solutions in path integral
- We need only exponential accuracy

Probability

Our aim is inclusive probability

$$
\begin{gathered}
\left.P_{n}(E) \equiv \sum_{f}|\langle f ; E, n| \hat{S} \hat{O}| 0\right\rangle\left.\right|^{2}=\int D[f, \phi] e^{W / \lambda} \sim \mathrm{e}^{F(\lambda n, \varepsilon) / \lambda} \\
\text { where } \\
\varepsilon=E / n-m \\
\text { with } n_{i} \ll \lambda^{-1} \text { particles } \\
\hat{O}|0\rangle-\text { initial state }
\end{gathered}
$$

We also use $\phi \rightarrow \phi / \sqrt{\lambda}$ to extract λ^{-1} from action

Initial state

$$
\hat{O}_{J}|0\rangle=\exp \left(-\frac{1}{\lambda} \int d^{3} \mathbf{x} J(\mathbf{x}) \hat{\phi}(0, \mathbf{x})\right)|0\rangle
$$

1. Creates $\mathrm{n}_{\mathrm{J}} \propto J^{2} / \lambda$ particles
2. $n_{J} \ll \lambda^{-1}$ or $J \rightarrow 0 \Rightarrow$ universality
3. At $1 \ll n_{J} \ll \lambda^{-1}$ we can

- Calculate semiclassically
- Use universality

Path integral representation

We compute

$$
\frac{\left.P_{n}^{J}(E) \equiv \sum_{f}\left|\langle f ; E, n| \hat{S} \hat{O}_{J}\right| 0\right\rangle\left.\right|^{2}=\int D[f, \phi] e^{W} / \lambda,}{} \begin{aligned}
& \text { Universality: } P_{n}(E)=\lim _{J \rightarrow 0} P_{n}^{J}(E)
\end{aligned}
$$

In the path integral representation

$$
P_{n}^{J}(E)=\int \mathbf{D} f\left|A_{J}\right|^{2} \quad A_{J}=\int \mathbf{D} \phi_{i, f} \underbrace{\left\langle f ; E, n \mid \phi_{f}\right\rangle}\left\langle\phi_{f}\right| \hat{S} \hat{O}_{J}\left|\phi_{i}\right\rangle\left\langle\phi_{i} \mid 0\right\rangle
$$

Saddle point

Use saddle-point approximation at $\lambda \rightarrow 0$

$$
\begin{gathered}
\frac{\delta W_{J}}{\delta \phi_{\mathrm{cl}}}=0 \\
P_{n}^{J}(E) \sim e^{F_{J}(\lambda n, \varepsilon) / \lambda} \\
F_{J}(\lambda n, \varepsilon)=W_{J}\left[\phi_{\mathrm{cl}}\right]
\end{gathered}
$$

ϕ_{cl} obeys classical field equation

$$
\square \phi_{c l}(x)+m^{2} \phi_{c l}(x)+\phi_{c l}^{3}(x)=i J(\mathbf{x}) \delta(t)
$$

Boundary conditions

Solution is calculated on the complex time contour

Numerical implementation

To solve the saddle-point boundary value problem numerically we

- Use $J(\mathbf{x})=j_{0} e^{-\mathbf{x}^{2} / 2 \sigma^{2}}$
- Discretize:

- Solve $2 \times N_{r} \times N_{t}+2$ real non-linear equations
- We consider only spherically symmetrical ϕ_{cl}

Solving the equations

- We used Newton-Raphson method

- Solution with required parameters is obtained by walking in the parameter space

Example of a solution

Extrapolation $J \rightarrow 0$

- $J(\mathbf{x})=j_{0} e^{-\mathbf{x}^{2} / 2 \sigma^{2}}$
- Consider $j_{0} \rightarrow 0, j_{0} / \sigma=$ const weak narrow source
- Solutions become singular at $j_{0}=0$ because of BC
- Use $F_{J}=F+F_{2} j_{0}^{2}+F_{4} j_{0}^{4}+\cdots$
- Can compute $j_{0} \rightarrow 0$ with different j_{0} / σ

Probabilities as
 functions of $\lambda n, \varepsilon$

- Suppression exponent and amplitudes
- Limit $\lambda n \gg 1$
- Limit $\varepsilon \gg m$

Example of typical behavior

- Tree-level (known) [Bezrukov, 1998]:

$$
F=\lambda n \ln \left(\frac{\lambda n}{16}\right)-\lambda n+\lambda n f(\varepsilon)+O(\lambda n)^{2}
$$

- Linear with good precision:

$$
\begin{gathered}
F=f_{\infty}(\varepsilon) \lambda n+g_{\infty}(\varepsilon) \\
P_{n}(E) \sim e^{f_{\infty}(\varepsilon) n+g_{\infty}(\varepsilon) / \lambda}
\end{gathered}
$$

- $\varepsilon=\frac{E}{n}-m$
- $P_{n}(E) \sim e^{F / \lambda}$

Numerical suppression exponents

$$
\varepsilon=\frac{E}{n}-m
$$

- F curves become closer to each other, when ε grows

f_{∞} as a function of ε

- $F \rightarrow f_{\infty}(\varepsilon) \lambda n+g_{\infty}(\varepsilon)$ for $\lambda n \gg 1$
- f_{∞} grows to -2.57 ± 0.06 for $\varepsilon \rightarrow \infty$
- $\varepsilon=\frac{E}{n}-m$

Amplitudes at threshold $(\varepsilon \rightarrow 0)$

$$
\begin{gathered}
\text { In the limit } \varepsilon \rightarrow 0 \text { one can estimate } \\
P_{n}(E \rightarrow m n) \approx\left|A_{n}\right|^{2} \times \text { phase volume } \approx e^{F(\lambda n, \varepsilon \leq m)}
\end{gathered}
$$

Can get $\left|A_{n}\right|=\exp \left(F_{A} / \lambda\right)$ from $F(\lambda n, \varepsilon \leq m)$ via extrapolation $\varepsilon \rightarrow 0$

Fitting of $F_{A}(\lambda n)$

- $F_{A}=\frac{\lambda}{2} \lim _{E \rightarrow n m} \ln \frac{P_{n}(E) m^{4-2 n}}{\text { phase vol. }}$
- Tree-level:

$$
F_{A}^{\text {tree }}=\frac{\lambda n}{2} \ln \left(\frac{\lambda n}{8}\right)-\frac{\lambda n}{2}
$$

- One-loop:
$F_{A}^{1-\text { loop }}=F_{A}^{\text {tree }}+\frac{(\lambda n)^{2} 3^{3 / 2}}{32 \pi^{2}} \ln (2+\sqrt{3})$

Conclusions

We calculated "holy grail" function $F(\lambda n, \varepsilon)$
 $$
P_{n}(E) \underset{\lambda n \rightarrow+\infty}{\longrightarrow} e^{n f_{\infty}+g_{\infty} / \lambda}
$$
 Generic?

Backup slides

Limit $J \rightarrow 0$ in more detail

After $\phi_{c l}$ is found, we calculate

$$
F_{J}=2 \lambda E T-\lambda n \theta-2 \lambda \operatorname{Im} S\left[\phi_{c l}\right]-2 \operatorname{Re} \int d^{3} \mathbf{x} J(\mathbf{x}) \phi_{c l}(0, \mathbf{x})
$$

Then take the limit

$$
F(\lambda n, \varepsilon)=\lim _{J \rightarrow 0} F_{J}(\lambda n, \varepsilon)
$$

Solutions become singular in the limit

- $E_{i}=0, E_{f}=E \Rightarrow$ discontinuity:
- $i J(\mathbf{x}) \delta(t) \Rightarrow$ energy changes at $t=0$
- $J=0 \Rightarrow$ energy conservation conflicts with $B C$

Source-dominated $\phi_{c l}^{0}$

When $\lambda n \ll 1 ; \sigma, \lambda E=$ const and $\lambda n \propto j_{0}^{2}$
only source produces particles

\[

\]

Can be analytically solved!
We use the solution as $\phi_{c l}^{0}$

Fits for F

Fitting function for F must

- Be close to tree-level $\lambda n \ln \left(\frac{\lambda n}{16}\right)-\lambda n+\lambda n f(\varepsilon)$ up to $O(\lambda n)^{2}$
- Tend to linear function for $\lambda n \rightarrow+\infty$

We used function with two fitting parameters:

$$
F \approx \lambda n f_{\infty}(\varepsilon)-\frac{\lambda n}{2} \ln \left[\left(\frac{16}{\lambda n}\right)^{2} e^{2-2 f(\varepsilon)+2 f_{\infty}(\varepsilon)}-\frac{2 g_{\infty}(\varepsilon)}{\lambda n}+1\right]
$$

Fit for f_{∞}

Fitting function for $f_{\infty}(\varepsilon)$ must

- Logarithmically diverge for $\varepsilon \rightarrow 0$
- Tend to constant for $\varepsilon \rightarrow+\infty$

We used function with two fitting parameters:

$$
f_{\infty}(\varepsilon) \approx-\frac{3}{4} \ln \left[\left(\frac{d_{1} m}{\varepsilon}\right)^{2}+d_{2}\right], \quad d_{i} \approx\{10.7,30.7\}
$$

