Suppression exponent for multiparticle production in $\lambda \phi^4$ theory

based on <u>2212.03268</u> and <u>2111.04760</u>

S.V. Demidov, B.R. Farkhtdinov^{1,2}, D.G. Levkov

¹Institute for Nuclear Research of the Russian Academy of Sciences

²Moscow Institute of Physics and Technology

Multiparticle production

- Multiparticle probabilities
- Perturbation theory
- Exponentiation

Multiparticle processes

$n \gg 1$ bosons in the final state and $n_i \ll \lambda^{-1}$ in the initial

Counting diagrams

The number of tree diagrams $\propto n!$

The number of one-loop diagrams $\propto n! n^2$

Amplitudes on threshold

In theory
$$S[\phi] = \frac{1}{2} \int d^4x \left(-\phi \Box \phi - m^2 \phi^2 - \frac{\lambda \phi^4}{2} \right)$$

$$A_{1\rightarrow n}=\left\langle n,E=nm\right|\hat{\phi}\left(0\right)\left|0\right\rangle$$

$$\begin{split} \phi_{\mathrm{cl}} \text{ is a generating functional} \\ \hline \langle n | \phi(x) | 0 \rangle &= \prod_{a=1}^{n} \int (d^{4}x_{a}) e^{ip_{a}x_{a}} (-p_{a}^{2} + m^{2}) \frac{\delta}{\delta\rho(x_{a})} \langle 0 + | \phi(x) | 0 - \rangle^{\rho} |_{\rho=0} \\ S \longrightarrow S + \int d^{4}x \rho \phi \qquad \langle 0 + | \phi(x) | 0 - \rangle^{\rho} \equiv \phi_{\mathrm{cl}}(x) \end{split}$$

Tree-level and one loop

 ϕ_{cl}^{tree} — solution of the classical equation with E = 0 [Brown, 1992]

$$\begin{bmatrix}
 A_{1 \to n}^{tree} = n! \left(\frac{\lambda}{8m^2}\right)^{\frac{n-1}{2}}, n - odd \\
 Indeed factorial growth!
 \end{bmatrix}$$

One-loop correction with ϕ_{cl}^{tree} as a background [Voloshin, 1992]

$$A_{1 \to n}^{1-loop} = A_{1 \to n}^{tree} B\lambda(n^2 + O(n))$$
$$B = const, n \gg 1$$

Indeed has $n! n^2$

Amplitudes and probabilities

Correction near the threshold [Libanov et al., 1994]

$$A_{1 \to n}^{tree}(p_1, \dots, p_n) \approx A_{1 \to n}^{tree}(0)e^{-\frac{5}{6}\epsilon n}, \qquad \epsilon = \frac{E}{n} - m \ll m$$

Probability estimation

$$P_{1 \to n}(\varepsilon) = \int \frac{|A_{1 \to n}|^2}{n!} \prod_i \frac{d^3 p_i}{2\omega_i} \approx \frac{|A_{1 \to n}(0)|^2}{n!} \times \text{(phase vol.)} \propto n!$$

Growth persists!

Failure of perturbation theory

Perturbative series for $A_{1 \rightarrow n}$ [Argyres, 1993]

$$A_{1\to n} = n! \left(\frac{\lambda}{8m^2}\right)^{\frac{n-1}{2}} [1 + \#\lambda(n^2 + \dots) + \#\lambda^2(n^4 + \dots) + \dots]$$

At *L* loops leading at $n \gg 1$ contribution $\propto n! (\lambda n^2)^L$ Blow up at $n \gtrsim \lambda^{-1}$

Series resummation

Resummation of leading at $n \gg 1$ contributions in all loops gives $A_{1 \to n}^{resummed} = A_{1 \to n}^{tree} \exp(B\lambda^2 n^2/\lambda)(...)$

B is the same as in the one-loop $\propto n^2$ term[Libanov et al., 1994]

$$\begin{array}{l} \operatorname{At} n \gg 1 \\ \hline A_{1 \rightarrow n}^{tree} \sim \sqrt{n!} \exp(\lambda n/2\lambda \ln \lambda n - \lambda n/2\lambda) \\ & \text{Amplitude} \\ \hline A_{1 \rightarrow n}^{resummed} \sim \sqrt{n!} \exp(F_A(\lambda n)/\lambda) \end{array}$$

Exponential form $\stackrel{?}{=}$ Semiclassical treatment

The exponent

Conjectures [Libanov et al., 1994]

1. $P_{few \to n}(\varepsilon) \sim e^{F(\lambda n, \varepsilon)/\lambda}$, $n \gg 1$, $\lambda n, \varepsilon = const. F(\lambda n, \varepsilon) -$ "holy grail" function 2. $F(\lambda n, \varepsilon)$ does not depend on the initial state if $n_i \ll \lambda^{-1}$

Semiclassical limit: $\lambda \rightarrow 0$; $\lambda n, \varepsilon = const$

Method of singular solutions

- Formulation
- Numerical implementation
- Verification

[<u>Son, 1995]</u>

Landau method in QM

In QM one can consider

$$\left< E' \left| \hat{O} \left| E \right> \sim e^{f}, \quad f = -\mathrm{Im} \left[\int_{-\infty}^{x_{*}} \left[2m \left(E' - V \right) \right]^{1/2} dx - \int_{-\infty}^{x_{*}} \left[2m \left(E - V \right) \right]^{1/2} dx
ight]
ight.$$

• \hat{O} can be \hat{x} , \hat{x}^2 , \hat{p} , etc. — answer is insensible

• x_* is a singular point of $V \Rightarrow$ singular solutions in path integral

• We need only exponential accuracy

Probability

Our aim is inclusive probability

$$P_n(E) \equiv \sum_f |\langle f; E, n | \hat{S} \hat{O} | 0 \rangle|^2 = \int D[f, \phi] e^{W/\lambda} \sim e^{F(\lambda n, \varepsilon)/\lambda},$$

where $\varepsilon = E/n - m$ with $n_i \ll \lambda^{-1}$ particles $\hat{O}|0\rangle$ — initial state

We also use $\phi \to \phi/\sqrt{\lambda}$ to extract λ^{-1} from action

Initial state

$$\widehat{O}_{J}|0\rangle = \exp\left(-\frac{1}{\lambda}\int d^{3}\mathbf{x} J(\mathbf{x})\widehat{\phi}(0,\mathbf{x})\right)|0\rangle$$

- **1**. Creates $n_J \propto J^2 / \lambda$ particles
- 2. $n_J \ll \lambda^{-1} \text{ or } J \to 0 \Rightarrow \text{universality}$
- 3. At $1 \ll n_I \ll \lambda^{-1}$ we can
 - Calculate semiclassically
 - Use universality

Path integral representation

We compute

$$P_n^J(E) \equiv \sum_f |\langle f; E, n | \hat{S} \hat{O}_J | 0 \rangle|^2 = \int D[f, \phi] e^{W_J / \lambda},$$

Universality: $P_n(E) = \lim_{J \to 0} P_n^J(E)$

In the path integral representation

$$P_{n}^{J}(E) = \int \mathbf{D}f \left|A_{J}\right|^{2} \qquad A_{J} = \int \mathbf{D}\phi_{i,f} \langle f; E, n | \phi_{f} \rangle \langle \phi_{f} | \hat{S} \hat{O}_{J} | \phi_{i} \rangle \langle \phi_{i} | 0 \rangle$$

$$e^{B_{f}(\phi_{f}, E, n)} e^{iS[\phi] - \int J\phi} e^{B_{i}(\phi_{i})}$$

Saddle point

Use saddle-point approximation at $\lambda \rightarrow 0$

$$\frac{\delta W_J}{\delta \phi_{\rm cl}} = 0$$

$$P_n^J(E) \sim e^{F_J(\lambda n, \varepsilon)/\lambda}$$

$$F_J(\lambda n, \varepsilon) = W_J[\phi_{\rm cl}]$$

 $\phi_{
m cl}$ obeys classical field equation

$$\Box \phi_{cl}(x) + m^2 \phi_{cl}(x) + \phi_{cl}^3(x) = i J(\mathbf{x}) \delta(t)$$

Boundary conditions

Numerical implementation

To solve the saddle-point boundary value problem numerically we

• Solve $2 \times N_r \times N_t + 2$ real non-linear equations

• We consider only spherically symmetrical $\phi_{
m cl}$

Solving the equations

Example of a solution

Extrapolation $J \rightarrow 0$

•
$$J(\mathbf{x}) = j_0 e^{-\mathbf{x}^2/2\sigma^2}$$

- Consider $j_0 \rightarrow 0$, $j_0/\sigma = const weak narrow source$
- Solutions become singular at $j_0 = 0$ because of BC

• Use
$$F_J = F + F_2 j_0^2 + F_4 j_0^4 + \cdots$$

• Can compute $j_0 \rightarrow 0$ with different j_0/σ

Probabilities as functions of $\lambda n, \varepsilon$

- Suppression exponent and amplitudes
- Limit $\lambda n \gg 1$
- Limit $\varepsilon \gg m$

Example of typical behavior

Numerical suppression exponents

f_{∞} as a function of ε

Amplitudes at threshold ($\varepsilon \rightarrow 0$)

In the limit $\varepsilon \rightarrow 0$ one can estimate

 $P_n(E \to mn) \approx |A_n|^2 \times \text{phase volume} \approx e^{F(\lambda n, \varepsilon \leq m)}$

Can get $|A_n| = \exp(F_A/\lambda)$ from $F(\lambda n, \varepsilon \le m)$ via extrapolation $\varepsilon \to 0$

Conclusions

Backup slides

2/10/2023

Limit $J \rightarrow 0$ in more detail

After ϕ_{cl} is found, we calculate

 $F_{J} = 2\lambda ET - \lambda n\theta - 2\lambda ImS[\phi_{cl}] - 2Re \int d^{3}\mathbf{x} J(\mathbf{x})\phi_{cl}(0,\mathbf{x})$

Then take the limit $F(\lambda n, \varepsilon) = \lim_{J \to 0} F_J(\lambda n, \varepsilon)$

Solutions become singular in the limit

• $E_i = 0, E_f = E \Rightarrow$ discontinuity:

• $iJ(\mathbf{x})\delta(t) \Rightarrow$ energy changes at t = 0

• $J = 0 \Rightarrow$ energy conservation conflicts with BC

Source-dominated ϕ_{cl}^0

When $\lambda n \ll 1$; σ , $\lambda E = const$ and $\lambda n \propto j_0^2$

only source produces particles

Can be analytically solved!

We use the solution as ϕ^0_{cl}

Fits for F

Fitting function for *F* must

• Be close to tree-level $\lambda n \ln \left(\frac{\lambda n}{16}\right) - \lambda n + \lambda n f(\varepsilon)$ up to $O(\lambda n)^2$

• Tend to linear function for $\lambda n \to +\infty$

We used function with two fitting parameters:

$$F \approx \lambda n f_{\infty}(\varepsilon) - \frac{\lambda n}{2} \ln \left[\left(\frac{16}{\lambda n} \right)^2 e^{2 - 2f(\varepsilon) + 2f_{\infty}(\varepsilon)} - \frac{2g_{\infty}(\varepsilon)}{\lambda n} + 1 \right]$$

Fit for f_{∞}

Fitting function for $f_{\infty}(\varepsilon)$ must

• Logarithmically diverge for $\varepsilon \to 0$

• Tend to constant for $\varepsilon \to +\infty$

We used function with two fitting parameters:

$$f_{\infty}(\varepsilon) \approx -\frac{3}{4} \ln \left[\left(\frac{d_1 m}{\varepsilon} \right)^2 + d_2 \right], \qquad d_i \approx \{10.7, 30.7\}$$