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General radially moving references frames in 
the black hole background 
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If we use original radial coordinate, we have  
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Singular transformation. Both coordinates fail to be independent 0 0e →

Generalization of GP metric 

Impossible to take limit in this metric directly 

The proper distance grows indefinitely, metric becomes singular 
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What happens in the limit 0 0e →

Singular transformation. Term with  dρ drops out 

Works under horizon only, f<0 

For a synchronous metric the limit is allowed, provided we make 
rescaling 
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Novikov presentation, 
Particular case of Kantowski-Sachs 
cosmology 
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Another version: modification of GP system under horizon 

From ,t r to ,t t

2 2
2 2 2 20

2 2 2
0 0 0

2 ( , )e gdtdtg g dtds dt r t t d
P P P

= − + + + Ω


 

Under horizon t is spacelike, so we have 1 spacelike and 1 timelike coordinates 
In GP system two timelike under horizon. 
Nondiagonal term defines flow velocity  
 
can be interpreted as a velocity with respect to frame where fiducial observer 
has 
Metric dual to GP, arranged for region under horizon, has smooth limit to  
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Velocities and their behavior 
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Frame attached to free falling 
observer 
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(1) 1stV →− Big Lorentz boost compensates small 
angular velocity in static frame. 
As a result, in Lemaitre frame component 

In a similar way, radial velocity can take any value. 
 
All this is a bright manifestation 
of the known relativistic effect according to which a 
vector, not collinear to the direction of motion, rotates 
under a Lorentz transformation. 
 

(3)V is finite and nonzero 



Vicinity of singularity 
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Nonradial motion with nonzero L 
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This means that any initial differences in 
radial motion for different particles 
disappear near the singularity, 
and the radial motion of any particle tends 
to the motion of the frame. 

The situation with angular velocity is opposite. If 
 0L ≠

Pure radial motion appears to be unstable—an arbitrary 
small deviation grows infinitely and results in 
an ultrarelativistic motion in an angular direction. If 
initially the directions of the vectors L are distributed 
randomly, the corresponding particles have mutual 
ultrarelativistic relative velocities near a singularity. 

Pure radial case 

Non-radial case 
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Horizon limit in general 

If  e and 0e have the same sign 
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For different signs of 

(1)| | 1V →

(3) 0V →
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e 0e
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Near singularity (now with arbitrary e and e_0) 
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f
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pure radial motion appears to be unstable—an arbitrary 
small deviation grows infinitely and results in 
an ultrarelativistic motion in an angular direction. If 
initially the directions of the vectors L are distributed 
randomly, the corresponding particles have mutual 
ultrarelativistic relative velocities near a singularity. 



E – expanding, C – contracting, 
sign of e_0 indicated 

Classification of frames 



MOTION WITH ANGULAR MOMENTUM 
AND HORIZON ASYMPTOTICS 
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What Can a Falling Observer See? 

Proper time finite, time t of remote observer infinite. 
Finiteness of speed of light – only finite part of Universe is 
accessible to falling observer (Krasnikov 2008, Grib and Pavlov 
2009) 
 

Assumptions 
1) Observer falls from right region R1 
2) It moves along geodesics 

But now an astrounaut should switch from E>0 to E=0. 
Engine! 
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Grib and Pavlov 2009 
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Fall from  0 gr r≤ to singularity 

Trust at some point 1ε =0nr Switch from to 0ε =

Geodesic before and after 
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Toporensky and Popov, Resonance 2023 
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Schematic picture of trajectories of an 
astronaut changing his path to the E = 0 
trajectory 

Ability of engine. Ability of austronaut to survive. Bends more to horizon, 
sees more and more from outer Universe. Engine is more powerful –  
austronaut sees bigger part of Universe. 
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Therefore, the bigger the vp, the bigger is the Lemaıtre time. So, the 
astronaut should use the remaining fuel — the fight against gravity makes sense! 
Ironically, not for the fighter — his proper time till singularity decreases while 
Lemaıtre time increases. 
 

More general formula for observer with any E between point 1 
 and singularity  
 

Under horizon 

pv v>

1pv =
max maxt τ>
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Toporensky and Popov 2023 
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Two Strategies of an Astronaut 

If one uses an engine near the horizon to make E=0, two goals at 
once: maximizing proper time till the singularity and maximizing the 
possible future of the universe seen during this fatal fall. 
What happens if an engine is turned on deeply inside T region? 
These two goals may require different strategies. 

For example, suppose that the observer inside the 
horizon found himself at a trajectory with ε = 0, but some fuel remains. 
Is it 
reasonable to use the fuel more? If we want to make the proper time 
before hitting 
singularity as large as possible, the answer is obviously “no” — the 
trajectory with 
ε = 0 is optimal. But what about the Lemaıtre time till the singularity? 
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If an astronaut understands 
that he/she is actually on the trajectory with ε < 0 and wants to achieve 
the maximum possible proper time, it is necessary to decrease vp in order 
to reach 
ε = 0. On the contrary, such an astronaut should increase vp as much as 
possible 
to maximize the Lemaıtre time (allowing to see more future of the outer 
word). 
In other words, a researcher inside the horizon should pay by the time of 
his own life for satisfying his curiosity! 
 
Existential question: to live long but boring life or a short life but to learn 
something? 
 
Better to combine both but under Schwarzschild horizon this is 
impossible 
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Goal 1 Goal 2 
E>0 Decrease 

E to E=0 
Decrease 
E to E=0 
 

E=0 Do 
nothing 

Increase 
v_p 
 

E<0 
 

Decrease 
v_p 

Increase 
v_p 

Goal 1: to make survival proper time bigger 
 
Goal 2: to see the maximum from outer Universe 
 
 

Contradictory strategies 
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