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¿ Some problems of In�ation

∗ η-problem. In large �eld models of in�ation, the in�aton has to

traverse a distance in �eld space larger than the Planck mass Mpl in

natural units. This has been argued to be problematic, since

non-renormalizable quantum corrections to the �eld's action arise. In

the absence of functional �ne-tuning or additional symmetries,

in�ation would be spoiled;

∗ The presence of eternal in�ation in almost all proposals has been

argued to lead to a possible loss of predictability due to our inability to

prescribe a unique measure: this is the so-called measure problem.

∗ In�ation does not provide a theory of initial conditions that would

explain why the in�aton �eld starts out high in its potential.

A. Linde (2014), 1402.0526
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¿ Alternative scenarios

Bounce Genesis
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M. Novello, S. E. Perez Berglia�a (2008), arXiv:

0802.1634

Creminelli, Nicolis, Trincherini (2010), arXiv:

1007.0027

Both can be viewed as alternatives to, or completion of in�ation.
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¿ Null energy condition (NEC)

Tµνn
µnν ≥ 0

for any null vector nµ, such that nµn
µ = 0

∗ Quite robust

∗ Implies a number of properties. For example: Penrose theorem.

Penrose' 1965

In cosmology: if the NEC holds, and spatial curvature is negligible, there is

initial singularity

⇒ No Bounce or Genesis.
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∗ A combination of Einstein equations (spatially �at):

dH

dt
= −4πG(ρ+ p)

ρ = T00 = energy density; Tij = δijp = e�ective pressure.

∗ The Null Energy Condition:

Tµvn
µnν ≥ 0, nµ = (1, 1, 0, 0) =⇒ ρ+ p ≥ 0 =⇒ dH/dt ≤ 0,

Hubble parameter was greater early on. No bounce

∗ Another side of the NEC: Covariant energy-momentum conservation:

dρ

dt
= −3H(ρ+ p)

NEC: energy density decreases during expansion, except for p = −ρ,

cosmological constant. No Genesis
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¿ Horndeski theory

S =

∫
d4x

√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X),

L3 = K(π,X)□π,

L4 = −G4(π,X)R+ 2G4X(π,X)
[
(□π)2 − π;µνπ

;µν] ,
L5 = G5(π,X)Gµνπ;µν +

1

3
G5X

[
(□π)3 − 3□ππ;µνπ

;µν + 2π;µνπ
;µρπ ν

;ρ

]
,

where π is the scalar �eld, X = gµνπ,µπ,ν , π,µ = ∂µπ, π;µν = ▽ν▽µπ,

□π = gµν▽ν▽µπ, G4X = ∂G4/∂X, etc.
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¿ Perturbations

spatially �at FLRW background:

ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2

)
.

The decomposition of metric perturbations hµν into helicity components in

the general case has the form

h00 = 2Φ

h0i = −∂iβ + ZT
i ,

hij = −2Ψδij − 2∂i∂jE −
(
∂iW

T
j + ∂jW

T
i

)
+ hij ,

the perturbation of scalar �eld δπ = χ.

The action for perturbations has the form:

S(2) =

∫
dt d3xa3

GT

2

(
ḣij

)2
−FT

(−→
∇hij

)2
a2

+ GS

(
ζ̇
)2

−FS

(−→
∇ζ
)2

a2

 .

GT ,FT ,GS ,FS - some functions on F,K,G4, G5 and their derivatives.
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¿ No-go theorem

To avoid ghost and gradient instabilities one requires GT > 0, GS > 0 and

FT > 0, FS > 0.

FS has a structure:

FS =
1

a

d

dt
ξ −FT

⇒ d

dt
ξ = a · (FS + FT ) > 0,

The point is that

ξ =
aG2

T

2θ
,

is, therefore, a monotonously growing function, which means it must cross

zero at some point, but we have G2
T in the numerator of ξ. These two

statements contradict each other.

Furthermore, at the point ξ = 0 θ → ∞ which means that the background

�elds H and π diverge, and that there is a singularity in the theory.
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¿ Ways to avoid No-go theorem

1. Beyond Horndeski theory:

L = LH + F4(π,X)ϵµνρσϵ
µ′ν′ρ′σπ,µπ,µ′π;νν′π;ρρ′

+F5(π,X)ϵµνρσϵµ
′ν′ρ′σ′

π,µπ,µ′π;νν′π;ρρ′π;σσ′ ,

then ξ = aGT (GT+D)
2θ

and one can construct stable non-singular

solution.
S. Mironov, V. Rubakov, and V. Volkova (2018 - 2020), arXiv: 1807.08361, 1905.06249,

1910.07019.

2. Naive strong coupling:∫ t

−∞
a(t)ξdt =

∫ t

−∞
a(t) [FT (t) + FS(t)] dt < ∞

This implies that FT → 0,FS → 0 as t → −∞; One also has

GT → 0,GS → 0 as t → −∞. In this case, the coe�cients in the

quadratic action for perturbations about the classical solution tend to

zero as t → −∞. It has been shown that, if we consider the next order

of action for perturbations, the strong coupling can be avoided for a

speci�c choice of the parameters of theory.
Y. Ageeva, P. Petrov and V. Rubakov (2020-2022), arXiv: 2009.05071, 2003.01202, 2104.13412
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¿ θ = 0

The quadratic action for the scalar perturbations has the form

S(2) =

∫
dtd3x a3

(
A1 Ψ̇

2 +A2
(
−→
∇Ψ)2

a2
+A3 Φ

2 +A4 Φ

−→
∇2β

a2
+A5 Ψ̇

−→
∇2β

a2

+A6 ΦΨ̇ +A7 Φ

−→
∇2Ψ

a2
+A8 Φ

−→
∇2χ

a2
+A9 χ̇

−→
∇2β

a2
+A10 χΨ̈ +A11 Φχ̇

+A12 χ

−→
∇2β

a2
+A13 χ

−→
∇2Ψ

a2
+A14 χ̇

2 +A15
(
−→
∇χ)2

a2
+A17 Φχ

+A18 Ψ̇χ+A19 Ψχ+A20 χ
2

)
where A4 = θ,A6 = 3θ, and E = 0 - partial gauge �x.
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¿ Gauge invariant variables

This action is invariant with respect to small coordinate transformations:

xµ → xµ − ξµ,

where ξµ =
(
ξ0, ξ

i
T + δij∂jξS

)T
. In which the �elds change as:

Φ → Φ+ξ̇0, β → β−ξ0+a2ξ̇S , χ → χ+ξ0π̇, Ψ → Ψ+ξ0H, E → E−ξS .

The action can be rewritten in explicitly gauge-invariant form by

introducing new variables (Bardeen variables):

X = χ+ π̇

(
β

a2
+ Ė

)
,

Y = Ψ+H

(
β

a2
+ Ė

)
,

Z = Φ+
d

dt

[
β

a2
+ Ė

]
.
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¿ Three variables action

In terms of these variables, the action will take the form

S(2) =

∫
dt d3x a3

(
A1

(
Ẏ
)2

+A2
(
−→
∇Y)2

a2
+A3 Z2 +A6 ZẎ +A7 Z

−→
∇2Y
a2

+A8 Z
−→
∇2X
a2

+A10 XŸ +A11 ZẊ +A13 X
−→
∇2Y
a2

+A14

(
Ẋ
)2

+A15
(
−→
∇X )2

a2
+A17ZX +A18 XẎ +A20X 2

)
At this point it is clearly seen that the �eld Z is non-dynamic and we can

derive a Z�constraint which has the following form:

Z =
1

2A3

(
−A7

−→
∇2Y
a2

−A8

−→
∇2X
a2

+ 3A4Ẏ −A11Ẋ −A17X

)
We used that A6 = −3A4.
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¿ Only A4 = 0 case

After integrating out Z, introducing

ζ = Y + ηX , η =
3A11A4 − 2A10A3

4A1A3 − 9A4
2 ,

and integrating out X variable, we get the following action:

S(2) =

∫
dt d3x a3

A2

(−→
∇ζ
)2

a2
− 1

9

A1
2

A3

(−→
∇2ζ

)2
a4


which means the absence of dynamics of the �eld ζ.
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¿ Additional options

From the view of the Z�constraint,

Z =
1

2A3

(
−A7

−→
∇2Y
a2

−A8

−→
∇2X
a2

+ 3A4Ẏ −A11Ẋ −A17X

)
we can also distinguish the case A3 = 0 as a singular point. By reason of

the following ratios on the coe�cients

A3 =
3

2
A4H − 1

2
A11π̇,

we have two options: A4 = 0, A11 = 0 and A4 = 0, π̇ = 0.
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¿ A4 = 0, A11 = 0

In this case, the Z�constraint gives us the condition:

X = −A7

A8
Y

Which brings the action into the following form:

S(2) =

∫
dt d3x a3 mY2

where

m = (Some VERY big expression)
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¿ A4 = 0, π̇ = 0

In this case, the condition A4 = 0 takes the form of:

G4H = 0

For A4 = 0 it is also necessary to impose the condition H = 0. And the

action takes the form:

S(2) =

∫
dt d3x a3

GS

(
Ẏ
)2

+mY2 −FS

(−→
∇Y

)2
a2


Where FS = GS The case of the Minkowski space in GR (G4 = 1

2
) is a

special case of this solution.
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¿ Brief summary

A4 ̸= 0 c2∞ = FS/GS

A4 ≡ 0
π̇ ̸= 0 no dynamics in scalar sector

π̇ = 0 c2∞ = 1

Thus, we obtained that A4 = 0 everywhere, always leads to a stable

solution in the scalar perturbation sector. In the case of non-trivial �eld π

there are no dynamical scalar perturbations, and thus the stability

condition does not arise at all, and in the case of a static background �eld

π, we obtain a scalar perturbation with the sound speed squared c2∞ = 1.
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¿ Reconstruction of Lagrangian functions

Without loss of generality we choose the following form of the scalar �eld

π(t) = t,

so that X = 1. To reconstruct the theory which corresponds some solution

we use the following ansatz for the Lagrangian functions

F (π,X) = f0(π) + f1(π) ·X,

K(π,X) = k1(π) ·X,

G4(π,X) =
1

2
.

We are interested to consider the case G4 = const, which corresponds to

GR.

Only the equations of motion and the condition A4 = 0 remain as possible

constraints:

f0 = −Ḣ,

f1 = −3H2,

k1 = H.
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¿ Bouncing solution

Hubble parameter can be choosen in the following form for the case of the

bounce:

H(t) =
t

3 (τ2 + t2)
,

so that

a(t) =
(
τ2 + t2

) 1
6 ,

and the bounce occurs at t = 0. In what follows we take τ ≫ 1 to make this

scale safely greater than Planck time. The parameter τ determines the

duration of the bouncing stage.

Corresponding Lagrangian reads

L =
π2 − τ2

3 (τ2 + π2)2
− π2X

(τ2 + π2)2
+

πX

3 (τ2 + π2)
□π +

1

2
R.
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the bouncing scenario with parameter τ = 25 (recall that k1(t) = H(t)).
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¿ Genesis

Genesis case corresponds to the Hubble parameter with the following

asymptotics on t → −∞:

H(t) ∝ 1

(−t)3
.

We consider full evolution which corresponds to a genesis start of the

universe with subsequent slowing down to Minkowski space in the end. We

choose

H(t) = α
τ2

(t2 + τ2)3/2
,

where α is an arbitary parameter which is responsible for the ratio of scale

factors at + and −∞. Then the scale factor is

a(t) = exp

(
αt√

τ2 + t2
+ α

)
,

which is the solution to the background equations of motion of the

Lagrangian:

L =
3ατ2π

(τ2 + π2)5/2
− 3X

α2τ4

(τ2 + π2)3
+X

ατ2

(τ2 + π2)3/2
□π +

1

2
R.
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the bouncing scenario with parameter α = 1, τ = 25 (recall that k1(t) = H(t)).

[22/23]



Thank you for your attention!

[23/23]


