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> Some problems of Inflation

n-problem. In large field models of inflation, the inflaton has to
traverse a distance in field space larger than the Planck mass M, in
natural units. This has been argued to be problematic, since
non-renormalizable quantum corrections to the field’s action arise. In
the absence of functional fine-tuning or additional symmetries,
inflation would be spoiled;

The presence of eternal inflation in almost all proposals has been
argued to lead to a possible loss of predictability due to our inability to
prescribe a unique measure: this is the so-called measure problem.

Inflation does not provide a theory of initial conditions that would
explain why the inflaton field starts out high in its potential.

A. Linde (2014), 1402.0526
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» Alternative scenarios

Bounce

0.030

0.015

Starts from contracting stage =
bounce = expansion

M. Novello, S. E. Perez Bergliaffa (2008), arXiv:
0802.1634

Both can be viewed as alternatives to,

Starts empty
space, then energy density builds
up,
expansion accelerates.

from Minkowski,
Universe starts to expand,

Creminelli, Nicolis, Trincherini (2010), arXiv:
1007.0027

or completion of inflation.
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» Null energy condition (NEC)

Twntn” >0
for any null vector n*, such that n,n" =0

Quite robust

Implies a number of properties. For example: Penrose theorem.
Penrose’ 1965
In cosmology: if the NEC holds, and spatial curvature is negligible, there is

initial singularity
= No Bounce or Genesis.
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A combination of Einstein equations (spatially flat):

dH
— = —Ax +
7 G(p+p)

p = Too = energy density; Ti; = 0;;p = effective pressure.

The Null Energy Condition:
Tywntn” > 0,n" = (1,1,0,0) = p+p > 0= dH/dt <0,

Hubble parameter was greater early on. No bounce

Another side of the NEC: Covariant energy-momentum conservation:

dp
5 = —SH(p+p)

NEC: energy density decreases during expansion, except for p = —p,
cosmological constant. No Genesis
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> Horndeski theory

S:/d4x\/jg(£2+£3+£4+£5),

£2 - F(ﬂ-7 X)J
L3 = K(m, X)Omr,
L4 = —Ga(m, X)R + 2Gax (m, X) [([On)° — ],

1 . .
Ls = Gs(m, X)G" 7, + §G5X [(Dﬂ')s — 30rmu " + 27w

where 7 is the scalar field, X = ¢""7 7, 7, = Oum, Ty = Vo Vp,
Or = g"*'v,Vum, Gax = 0G4/0X, etc.
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> Perturbations
spatially flat FLRW background:
ds® = dt* — a*(t) (da® + dy® + dz°) .

The decomposition of metric perturbations h,, into helicity components in
the general case has the form

hoo = 29

ho; = —0i8 + Z

gy = —2\11(51'3' — 281‘8]'E — (8ZWJT + 8jWiT) + hij,

the perturbation of scalar field om = .
The action for perturbations has the form:

(DI

a2

- 0 2
S(2> :/dt ddxaB g7T (h”) —]'-T

Gr,Fr,Gs, Fs - some functions on F, K, G4, G5 and their derivatives.
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»> INo-go theorem

To avoid ghost and gradient instabilities one requires Gr > 0, Gs > 0 and
Fr >0, Fs > 0.
JFs has a structure:

1d
Fs=oamt 7T
d
:>a§—a (Fs + Fr) > 0,
The point is that
_ a9t
57 207

is, therefore, a monotonously growing function, which means it must cross
zero at some point, but we have G in the numerator of £&. These two
statements contradict each other.

Furthermore, at the point { = 0 6 — oo which means that the background
fields H and 7 diverge, and that there is a singularity in the theory.
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> Ways to avoid No-go theorem
Beyond Horndeski theory:
L =Ly + Fu(r, X)e‘“”’ge“’”/plaﬂ,uﬂ,ufﬂ;wlw;pp/
+F5(, X)ewpoe“l”,plgl7r7#7r,u/7r;,,,,/7r;ppr7r;aa/,

then £ = w and one can construct stable non-singular

solution.
S. Mironov, V. Rubakov, and V. Volkova (2018 - 2020), arXiv: 1807.08361, 1905.06249,
1910.07019.

Naive strong coupling:
t ]

/ a(t)édt = / a(t) [Fr(t) + Fs(t)] dt < oo
This implies that Fr — 0, Fs — 0 as t — —oo; One also has
gr — 0,Gs — 0 as t — —oo. In this case, the coefficients in the
quadratic action for perturbations about the classical solution tend to
zero as t — —oo. It has been shown that, if we consider the next order
of action for perturbations, the strong coupling can be avoided for a

specific choice of the parameters of theory.
Y. Ageeva, P. Petrov and V. Rubakov (2020-2022), arXiv: 2009.05071, 2003.01202, 2104.13412
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The quadratic action for the scalar perturbations has the form

2 2 2
S(2>:/dtd3xa3<A1\I/2+A (i‘l’) + A3 ®% + Ay @e + A5 O 6;5
=3 ?2 ?2
Vv \I/
+ Ag @ +A<)X 5+A10X‘I’+A11 dx
V2 ?2 ?
+A12 x azﬁ—ﬁ-x‘hsx + A X+ As ( a;() + A7 Dx

+A18 Uy + Ao Ux + A X2)

where Ay = 6, Ag = 30, and E = 0 - partial gauge fix.
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» Gauge invariant variables

This action is invariant with respect to small coordinate transformations:
ot — ot — ¢,
where & = (&, &7 + 6ijaj£S)T. In which the fields change as:
® — d+&y, B — B—Eo+a’s, X — x+&owr, ¥ — U+&H, E — E—Es.

The action can be rewritten in explicitly gauge-invariant form by
introducing new variables (Bardeen variables):

X:x+#(%+E>7

a

y:\P+H(%+E>,
a

_o 28 ¢

2f¢+&[ +4.

a2
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» Three variables action

In terms of these variables, the action will take the form

?Zy

G N\ 2
S<2>:/dtd5m3 <A1 (y) + A, Y ?y + A3 22+ A ZY + A7 2

2X ?2 2
+As Z + A1 XY+ Ay ZX + A1 X y+A14( )

ﬁ»c)

+A1s

+ A7 ZX +A1g XY + A20X2)

At this point it is clearly seen that the field Z is non-dynamic and we can
derive a Z—constraint which has the following form:

1< ?2 ?2

— A 3A A X — A1 X
2A3 8 + 34,V — Ay 17 )

We used that Ag = —3A4.
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> Only Ay = 0 case

After integrating out Z, introducing

_ 3A1 Ay — 245043
T 4A1A3 — 94,2

¢=Y+nX,

and integrating out X variable, we get the following action:

(Y) _1ae(F9)

a? 9 Az at

5@ = /dtd3xa3 Ao

which means the absence of dynamics of the field (.
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» Additional options

From the view of the Z—constraint,

1 < ?2 7A8?22X

Z=

oA, +3A4Y — A X — A17X>

we can also distinguish the case A3 = 0 as a singular point. By reason of

the following ratios on the coefficients
3 1 .
A3 = §A4H — §A4117T7

we have two options: A4 =0,A41; =0 and A4 = 0,7 = 0.
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» A4:0,A11 =0

In this case, the Z—constraint gives us the condition:
Az
X=—-—"
As Y
Which brings the action into the following form:

S@ — /dtdgza3 m)>

where
m = (Some VERY big expression)
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» A4:O,7'r=0

In this case, the condition A4 = 0 takes the form of:
GsH =0

For A4 = 0 it is also necessary to impose the condition H = 0. And the
action takes the form:

?y)

S® = /dtd3x a® | Gs (y) + mY? ]'"s(

Where Fs = Gs The case of the Minkowski space in GR (G4 = %) is a
special case of this solution.
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> Brief summary

Ay #0 c2, = Fs/Gs
7 # 0 | no dynamics in scalar sector
A4 =0 " 5
=0 g = 1l

Thus, we obtained that A4 = 0 everywhere, always leads to a stable
solution in the scalar perturbation sector. In the case of non-trivial field 7
there are no dynamical scalar perturbations, and thus the stability
condition does not arise at all, and in the case of a static background field
7, we obtain a scalar perturbation with the sound speed squared ¢, = 1.
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»> Reconstruction of Lagrangian functions
Without loss of generality we choose the following form of the scalar field
w(t) =t,

so that X = 1. To reconstruct the theory which corresponds some solution
we use the following ansatz for the Lagrangian functions
F(r, X) = fo(m) + fi(7) - X,
K(ﬂ',X) = k’l(ﬂ') . X,
1

Ga(m, X) = 5.

We are interested to consider the case G4 = const, which corresponds to
GR.
Only the equations of motion and the condition A4 = 0 remain as possible

constraints:
fo=-H,
fr=-3H%
k1= H.
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»> Bouncing solution

Hubble parameter can be choosen in the following form for the case of the

bounce:
t

Ht) = ——

®) 3(12 +1¢2)’
so that

2, .2\%
a(t) = (7" +t°)°,
and the bounce occurs at ¢ = 0. In what follows we take 7 > 1 to make this
scale safely greater than Planck time. The parameter 7 determines the
duration of the bouncing stage.
Corresponding Lagrangian reads
w2 — 72 X X

1
L= - Or + - R.
3(2 1) (2 im2)2 3P+ 2
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Hubble parameter H(t), scale factor a(t) and the Lagrangian functions fo(t), fi(t) of
the bouncing scenario with parameter 7 = 25 (recall that ki (t) = H(t)).
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» Genesis

Genesis case corresponds to the Hubble parameter with the following
asymptotics on ¢ — —oo:

We consider full evolution which corresponds to a genesis start of the
universe with subsequent slowing down to Minkowski space in the end. We

choose )
=

H(t) = am,
where « is an arbitary parameter which is responsible for the ratio of scale
factors at + and —oo. Then the scale factor is
a(t) = exp (\/% + a) ,
which is the solution to the background equations of motion of the
Lagrangian:
3ar?m a’T ar?

1
L= —3X X O —R.
s L R LA R S
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Hubble parameter H(t), scale factor a(t) and the Lagrangian functions fo(t), fi(t) of
the bouncing scenario with parameter a = 1,7 = 25 (recall that kq(t) = H(t)).
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Thank you for your attention!
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